These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 37408276)
21. Genome-wide perturbations of A-to-I RNA editing dysregulated circular RNAs promoting the development of cervical cancer. Wang Y; Zhao J; Wu J; Liu J; Wang Y; Xu T; Zhang M; Zhuang M; Zou L; Sun W; Han P; Song X Comput Biol Med; 2023 Nov; 166():107546. PubMed ID: 37826952 [TBL] [Abstract][Full Text] [Related]
22. Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? Kawahara Y; Kwak S Amyotroph Lateral Scler Other Motor Neuron Disord; 2005 Sep; 6(3):131-44. PubMed ID: 16183555 [TBL] [Abstract][Full Text] [Related]
23. Rescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous AAV9-ADAR2 delivery to motor neurons. Yamashita T; Chai HL; Teramoto S; Tsuji S; Shimazaki K; Muramatsu S; Kwak S EMBO Mol Med; 2013 Nov; 5(11):1710-9. PubMed ID: 24115583 [TBL] [Abstract][Full Text] [Related]
24. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Butti Z; Patten SA Front Genet; 2018; 9():712. PubMed ID: 30723494 [TBL] [Abstract][Full Text] [Related]
26. Update on the pathological roles of prostaglandin E Nango H; Tsuruta K; Miyagishi H; Aono Y; Saigusa T; Kosuge Y Transl Neurodegener; 2023 Jun; 12(1):32. PubMed ID: 37337289 [TBL] [Abstract][Full Text] [Related]
27. MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis. Rinchetti P; Rizzuti M; Faravelli I; Corti S Mol Neurobiol; 2018 Mar; 55(3):2617-2630. PubMed ID: 28421535 [TBL] [Abstract][Full Text] [Related]
28. α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor and RNA processing gene dysregulation are early determinants of selective motor neuron vulnerability in a mouse model of amyotrophic lateral sclerosis. Zanganeh PF; Barton SK; Lim K; Qian EL; Crombie DE; Bye CR; Turner BJ Brain Commun; 2022; 4(2):fcac081. PubMed ID: 35445192 [TBL] [Abstract][Full Text] [Related]
29. Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Wang Y; Patani R Expert Opin Ther Targets; 2020 Oct; 24(10):971-984. PubMed ID: 32746659 [TBL] [Abstract][Full Text] [Related]
30. Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Takuma H; Kwak S; Yoshizawa T; Kanazawa I Ann Neurol; 1999 Dec; 46(6):806-15. PubMed ID: 10589532 [TBL] [Abstract][Full Text] [Related]
31. Dysregulation of AMPA receptor subunit expression in sporadic ALS post-mortem brain. Gregory JM; Livesey MR; McDade K; Selvaraj BT; Barton SK; Chandran S; Smith C J Pathol; 2020 Jan; 250(1):67-78. PubMed ID: 31579943 [TBL] [Abstract][Full Text] [Related]
32. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets? Donnelly CJ; Grima JC; Sattler R Neurodegener Dis Manag; 2014; 4(6):417-37. PubMed ID: 25531686 [TBL] [Abstract][Full Text] [Related]
33. Taking a risk: a therapeutic focus on ataxin-2 in amyotrophic lateral sclerosis? van den Heuvel DM; Harschnitz O; van den Berg LH; Pasterkamp RJ Trends Mol Med; 2014 Jan; 20(1):25-35. PubMed ID: 24140266 [TBL] [Abstract][Full Text] [Related]
34. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Highley JR; Kirby J; Jansweijer JA; Webb PS; Hewamadduma CA; Heath PR; Higginbottom A; Raman R; Ferraiuolo L; Cooper-Knock J; McDermott CJ; Wharton SB; Shaw PJ; Ince PG Neuropathol Appl Neurobiol; 2014 Oct; 40(6):670-85. PubMed ID: 24750229 [TBL] [Abstract][Full Text] [Related]
35. SRSF1-dependent inhibition of C9ORF72-repeat RNA nuclear export: genome-wide mechanisms for neuroprotection in amyotrophic lateral sclerosis. Castelli LM; Cutillo L; Souza CDS; Sanchez-Martinez A; Granata I; Lin YH; Myszczynska MA; Heath PR; Livesey MR; Ning K; Azzouz M; Shaw PJ; Guarracino MR; Whitworth AJ; Ferraiuolo L; Milo M; Hautbergue GM Mol Neurodegener; 2021 Aug; 16(1):53. PubMed ID: 34376242 [TBL] [Abstract][Full Text] [Related]
36. RNA as a source of biomarkers for amyotrophic lateral sclerosis. Kiaei L; Kiaei M Metab Brain Dis; 2022 Aug; 37(6):1697-1702. PubMed ID: 33905071 [TBL] [Abstract][Full Text] [Related]
37. Effects of antidepressants on GluR2 Q/R site-RNA editing in modified HeLa cell line. Sawada J; Yamashita T; Aizawa H; Aburakawa Y; Hasebe N; Kwak S Neurosci Res; 2009 Jul; 64(3):251-8. PubMed ID: 19447293 [TBL] [Abstract][Full Text] [Related]
38. Deficient RNA-editing enzyme ADAR2 in an amyotrophic lateral sclerosis patient with a FUS(P525L) mutation. Aizawa H; Hideyama T; Yamashita T; Kimura T; Suzuki N; Aoki M; Kwak S J Clin Neurosci; 2016 Oct; 32():128-9. PubMed ID: 27343041 [TBL] [Abstract][Full Text] [Related]
39. [Calpain plays a crucial role in TDP-43 pathology]. Yamashita T; Kwak S Rinsho Shinkeigaku; 2014; 54(12):1151-4. PubMed ID: 25672733 [TBL] [Abstract][Full Text] [Related]
40. RNA metabolism in ALS: when normal processes become pathological. Droppelmann CA; Campos-Melo D; Ishtiaq M; Volkening K; Strong MJ Amyotroph Lateral Scler Frontotemporal Degener; 2014 Sep; 15(5-6):321-36. PubMed ID: 24555412 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]