BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37408305)

  • 1. Aromatic and arginine content drives multiphasic condensation of protein-RNA mixtures.
    Chew PY; Joseph JA; Collepardo-Guevara R; Reinhardt A
    Biophys J; 2024 Jun; 123(11):1342-1355. PubMed ID: 37408305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.
    Kelley FM; Favetta B; Regy RM; Mittal J; Schuster BS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34916288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging can transform single-component protein condensates into multiphase architectures.
    Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and deformation of biomolecular condensates under the action of shear flow.
    Coronas LE; Van T; Iorio A; Lapidus LJ; Feig M; Sterpone F
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38832749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies.
    Kaur T; Raju M; Alshareedah I; Davis RB; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Feb; 12(1):872. PubMed ID: 33558506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic origins of two-component multiphase condensates of proteins.
    Chew PY; Joseph JA; Collepardo-Guevara R; Reinhardt A
    Chem Sci; 2023 Feb; 14(7):1820-1836. PubMed ID: 36819870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular condensates form spatially inhomogeneous network fluids.
    Dar F; Cohen SR; Mitrea DM; Phillips AH; Nagy G; Leite WC; Stanley CB; Choi JM; Kriwacki RW; Pappu RV
    Nat Commun; 2024 Apr; 15(1):3413. PubMed ID: 38649740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine multivalency stabilizes protein/RNA condensates.
    Paloni M; Bussi G; Barducci A
    Protein Sci; 2021 Jul; 30(7):1418-1426. PubMed ID: 33982350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonspecific Interactions in Transcription Regulation and Organization of Transcriptional Condensates.
    Valyaeva AA; Sheval EV
    Biochemistry (Mosc); 2024 Apr; 89(4):688-700. PubMed ID: 38831505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic Effect on the Microenvironment of Biomolecular Condensates.
    Zhu L; Pan Y; Hua Z; Liu Y; Zhang X
    J Am Chem Soc; 2024 May; 146(20):14307-14317. PubMed ID: 38722189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering of Aromatic Residues in Prion-like Domains Can Tune the Formation, State, and Organization of Biomolecular Condensates.
    Holehouse AS; Ginell GM; Griffith D; Böke E
    Biochemistry; 2021 Nov; 60(47):3566-3581. PubMed ID: 34784177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA in biological condensates.
    Cech TR
    RNA; 2022 Jan; 28(1):1-2. PubMed ID: 34903621
    [No Abstract]   [Full Text] [Related]  

  • 20. Mesoscale structure-function relationships in mitochondrial transcriptional condensates.
    Feric M; Sarfallah A; Dar F; Temiakov D; Pappu RV; Misteli T
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2207303119. PubMed ID: 36191226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.