These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 37408500)
1. A radiomics model enables prediction venous sinus invasion in meningioma. Wang L; Cao Y; Zhang G; Sun D; Zhou W; Li W; Zhou J; Chen K; Zhang J Ann Clin Transl Neurol; 2023 Aug; 10(8):1284-1295. PubMed ID: 37408500 [TBL] [Abstract][Full Text] [Related]
2. MRI- and DWI-Based Radiomics Features for Preoperatively Predicting Meningioma Sinus Invasion. Gui Y; Chen F; Ren J; Wang L; Chen K; Zhang J J Imaging Inform Med; 2024 Jun; 37(3):1054-1066. PubMed ID: 38351221 [TBL] [Abstract][Full Text] [Related]
3. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study. Zhang J; Yao K; Liu P; Liu Z; Han T; Zhao Z; Cao Y; Zhang G; Zhang J; Tian J; Zhou J EBioMedicine; 2020 Aug; 58():102933. PubMed ID: 32739863 [TBL] [Abstract][Full Text] [Related]
4. Radiomic features of magnetic resonance images as novel preoperative predictive factors of bone invasion in meningiomas. Zhang J; Sun J; Han T; Zhao Z; Cao Y; Zhang G; Zhou J Eur J Radiol; 2020 Nov; 132():109287. PubMed ID: 32980725 [TBL] [Abstract][Full Text] [Related]
5. A Magnetic Resonance Imaging-Based Radiomic Model for the Noninvasive Preoperative Differentiation Between Transitional and Atypical Meningiomas. Zhang J; Zhang G; Cao Y; Ren J; Zhao Z; Han T; Chen K; Zhou J Front Oncol; 2022; 12():811767. PubMed ID: 35127543 [TBL] [Abstract][Full Text] [Related]
6. Multiparameter MRI-based radiomics nomogram for preoperative prediction of brain invasion in atypical meningioma:a multicentre study. Yu J; Kong X; Xie D; Zheng F; Wang C; Shi D; He C; Liang X; Xu H; Li S; Chen X BMC Med Imaging; 2024 Jun; 24(1):134. PubMed ID: 38840054 [TBL] [Abstract][Full Text] [Related]
7. A deep learning radiomics analysis for identifying sinus invasion in patients with meningioma before operation using tumor and peritumoral regions. Sun K; Zhang J; Liu Z; Qiu Q; Gao H; Liu P; Chen K; Wei W; Wang L; Zhang J; Zhou J; Tian J Eur J Radiol; 2022 Apr; 149():110187. PubMed ID: 35183900 [TBL] [Abstract][Full Text] [Related]
8. A deep learning radiomics model for preoperative grading in meningioma. Zhu Y; Man C; Gong L; Dong D; Yu X; Wang S; Fang M; Wang S; Fang X; Chen X; Tian J Eur J Radiol; 2019 Jul; 116():128-134. PubMed ID: 31153553 [TBL] [Abstract][Full Text] [Related]
9. A radiomics nomogram for predicting the meningioma grade based on enhanced Duan C; Zhou X; Wang J; Li N; Liu F; Gao S; Liu X; Xu W Br J Radiol; 2022 Sep; 95(1137):20220141. PubMed ID: 35816518 [TBL] [Abstract][Full Text] [Related]
10. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758 [TBL] [Abstract][Full Text] [Related]
11. Development of a Clinicopathological-Radiomics Model for Predicting Progression and Recurrence in Meningioma Patients. He M; Wang X; Huang C; Peng X; Li N; Li F; Dong H; Wang Z; Zhao L; Wu F; Zhang M; Guan X; Xu X Acad Radiol; 2024 May; 31(5):2061-2073. PubMed ID: 37993304 [TBL] [Abstract][Full Text] [Related]
12. A Predictive Nomogram for Atypical Meningioma Based On Preoperative Magnetic Resonance Imaging and Routine Blood Tests. Lin Y; Dai P; Lin Q; Chen J World Neurosurg; 2022 Jul; 163():e610-e616. PubMed ID: 35430397 [TBL] [Abstract][Full Text] [Related]
13. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI. Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409 [TBL] [Abstract][Full Text] [Related]
14. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299 [TBL] [Abstract][Full Text] [Related]
15. Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging. Han T; Liu X; Long C; Xu Z; Geng Y; Zhang B; Deng L; Jing M; Zhou J Magn Reson Imaging; 2023 Dec; 104():16-22. PubMed ID: 37734573 [TBL] [Abstract][Full Text] [Related]
16. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547 [TBL] [Abstract][Full Text] [Related]
17. Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers. Cepeda S; Arrese I; García-García S; Velasco-Casares M; Escudero-Caro T; Zamora T; Sarabia R World Neurosurg; 2021 Feb; 146():e1147-e1159. PubMed ID: 33259973 [TBL] [Abstract][Full Text] [Related]
18. 3D Fast Spin-Echo T1 Black-Blood Imaging for the Preoperative Detection of Venous Sinus Invasion by Meningioma : Comparison with Contrast-Enhanced MRV. Wang D; Lu Y; Yin B; Chen M; Geng D; Liu L; Wen J; Zhong P; Li Y Clin Neuroradiol; 2019 Mar; 29(1):65-73. PubMed ID: 29071386 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features. Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817 [TBL] [Abstract][Full Text] [Related]
20. Nomogram based on MRI can preoperatively predict brain invasion in meningioma. Zhang J; Cao Y; Zhang G; Zhao Z; Sun J; Li W; Ren J; Han T; Zhou J; Chen K Neurosurg Rev; 2022 Dec; 45(6):3729-3737. PubMed ID: 36180806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]