These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation. Wu H; Chen S; Chen G; Wang W; Lei B; Wen Z Med Image Anal; 2022 Feb; 76():102327. PubMed ID: 34923250 [TBL] [Abstract][Full Text] [Related]
4. MASDF-Net: A Multi-Attention Codec Network with Selective and Dynamic Fusion for Skin Lesion Segmentation. Fu J; Deng H Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205066 [TBL] [Abstract][Full Text] [Related]
5. BLA-Net:Boundary learning assisted network for skin lesion segmentation. Feng R; Zhuo L; Li X; Yin H; Wang Z Comput Methods Programs Biomed; 2022 Nov; 226():107190. PubMed ID: 36288686 [TBL] [Abstract][Full Text] [Related]
6. EA-Net: Research on skin lesion segmentation method based on U-Net. Cheng D; Gai J; Mao Y; Gao X; Zhang B; Jing W; Deng J; Zhao F; Mao N Heliyon; 2023 Dec; 9(12):e22663. PubMed ID: 38076196 [TBL] [Abstract][Full Text] [Related]
7. PDC-Net: parallel dilated convolutional network with channel attention mechanism for pituitary adenoma segmentation. Zhang Q; Cheng J; Zhou C; Jiang X; Zhang Y; Zeng J; Liu L Front Physiol; 2023; 14():1259877. PubMed ID: 37711463 [TBL] [Abstract][Full Text] [Related]
8. SUTrans-NET: a hybrid transformer approach to skin lesion segmentation. Li Y; Tian T; Hu J; Yuan C PeerJ Comput Sci; 2024; 10():e1935. PubMed ID: 38660200 [TBL] [Abstract][Full Text] [Related]
9. TG-Net: Using text prompts for improved skin lesion segmentation. Meng X; Yu C; Zhang Z; Zhang X; Wang M Comput Biol Med; 2024 Sep; 179():108819. PubMed ID: 38964245 [TBL] [Abstract][Full Text] [Related]
10. Densely connected U-Net retinal vessel segmentation algorithm based on multi-scale feature convolution extraction. Du X; Wang J; Sun W Med Phys; 2021 Jul; 48(7):3827-3841. PubMed ID: 34028030 [TBL] [Abstract][Full Text] [Related]
11. MFI-Net: A multi-resolution fusion input network for retinal vessel segmentation. Jiang Y; Wu C; Wang G; Yao HX; Liu WH PLoS One; 2021; 16(7):e0253056. PubMed ID: 34252111 [TBL] [Abstract][Full Text] [Related]
12. ACCPG-Net: A skin lesion segmentation network with Adaptive Channel-Context-Aware Pyramid Attention and Global Feature Fusion. Zhang W; Lu F; Zhao W; Hu Y; Su H; Yuan M Comput Biol Med; 2023 Mar; 154():106580. PubMed ID: 36716686 [TBL] [Abstract][Full Text] [Related]
13. Learning from dermoscopic images in association with clinical metadata for skin lesion segmentation and classification. Dong C; Dai D; Zhang Y; Zhang C; Li Z; Xu S Comput Biol Med; 2023 Jan; 152():106321. PubMed ID: 36463792 [TBL] [Abstract][Full Text] [Related]
14. Curv-Net: Curvilinear structure segmentation network based on selective kernel and multi-Bi-ConvLSTM. He Y; Sun H; Yi Y; Chen W; Kong J; Zheng C Med Phys; 2022 May; 49(5):3144-3158. PubMed ID: 35172016 [TBL] [Abstract][Full Text] [Related]
16. A multiple-channel and atrous convolution network for ultrasound image segmentation. Zhang L; Zhang J; Li Z; Song Y Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105 [TBL] [Abstract][Full Text] [Related]
17. MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation. Zhang J; Zhang Y; Jin Y; Xu J; Xu X Health Inf Sci Syst; 2023 Dec; 11(1):13. PubMed ID: 36925619 [TBL] [Abstract][Full Text] [Related]
18. Rema-Net: An efficient multi-attention convolutional neural network for rapid skin lesion segmentation. Yang L; Fan C; Lin H; Qiu Y Comput Biol Med; 2023 Jun; 159():106952. PubMed ID: 37084639 [TBL] [Abstract][Full Text] [Related]
19. EU-Net: Enhanced U-shaped Network for Breast Mass Segmentation. Chowdary GJ; Yoagarajah P IEEE J Biomed Health Inform; 2023 Apr; PP():. PubMed ID: 37043320 [TBL] [Abstract][Full Text] [Related]
20. Collaborative multi-feature extraction and scale-aware semantic information mining for medical image segmentation. Zhang R; He Z; Zhu J; Yuan X; Huang G; Pun CM; Peng J; Lin J; Zhou J Phys Med Biol; 2022 Oct; 67(20):. PubMed ID: 36170875 [No Abstract] [Full Text] [Related] [Next] [New Search]