These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37408638)

  • 1. Novel parasitic chytrids infecting snow algae in an alpine snow ecosystem in Japan.
    Nakanishi H; Seto K; Takeuchi N; Kagami M
    Front Microbiol; 2023; 14():1201230. PubMed ID: 37408638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeny and biogeography of an uncultured clade of snow chytrids.
    Naff CS; Darcy JL; Schmidt SK
    Environ Microbiol; 2013 Oct; 15(10):2672-80. PubMed ID: 23551529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High prevalence of parasitic chytrids infection of glacier algae in cryoconite holes in Alaska.
    Kobayashi K; Takeuchi N; Kagami M
    Sci Rep; 2023 Mar; 13(1):3973. PubMed ID: 36894609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic Position of Parasitic Chytrids on Diatoms: Characterization of a Novel Clade in Chytridiomycota.
    Seto K; Kagami M; Degawa Y
    J Eukaryot Microbiol; 2017 May; 64(3):383-393. PubMed ID: 27714973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity and Hidden Host Specificity of Chytrids Infecting Colonial Volvocacean Algae.
    Van den Wyngaert S; Rojas-Jimenez K; Seto K; Kagami M; Grossart HP
    J Eukaryot Microbiol; 2018 Nov; 65(6):870-881. PubMed ID: 29752884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that chytrids dominate fungal communities in high-elevation soils.
    Freeman KR; Martin AP; Karki D; Lynch RC; Mitter MS; Meyer AF; Longcore JE; Simmons DR; Schmidt SK
    Proc Natl Acad Sci U S A; 2009 Oct; 106(43):18315-20. PubMed ID: 19826082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Community Analysis of Colored Snow from an Alpine Snowfield in Northern Japan Reveals the Prevalence of
    Terashima M; Umezawa K; Mori S; Kojima H; Fukui M
    Front Microbiol; 2017; 8():1481. PubMed ID: 28824603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chytrids dominate arctic marine fungal communities.
    Hassett BT; Gradinger R
    Environ Microbiol; 2016 Jun; 18(6):2001-9. PubMed ID: 26754171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial diversity in alpine tundra soils correlates with snow cover dynamics.
    Zinger L; Shahnavaz B; Baptist F; Geremia RA; Choler P
    ISME J; 2009 Jul; 3(7):850-9. PubMed ID: 19322246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rediscovering Zygorhizidium affluens Canter: Molecular Taxonomy, Infectious Cycle, and Cryopreservation of a Chytrid Infecting the Bloom-Forming Diatom Asterionella formosa.
    Rad-Menéndez C; Gerphagnon M; Garvetto A; Arce P; Badis Y; Sime-Ngando T; Gachon CMM
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Community structure of planktonic fungi and the impact of parasitic chytrids on phytoplankton in Lake Inba, Japan.
    Kagami M; Amano Y; Ishii N
    Microb Ecol; 2012 Feb; 63(2):358-68. PubMed ID: 21805083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonality of Glacial Snow and Ice Microbial Communities.
    Winkel M; Trivedi CB; Mourot R; Bradley JA; Vieth-Hillebrand A; Benning LG
    Front Microbiol; 2022; 13():876848. PubMed ID: 35651494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest.
    Hamilton TL; Havig J
    Geobiology; 2017 Mar; 15(2):280-295. PubMed ID: 27917584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snow and Glacial Algae: A Review
    Hoham RW; Remias D
    J Phycol; 2020 Apr; 56(2):264-282. PubMed ID: 31825096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier.
    Rime T; Hartmann M; Frey B
    ISME J; 2016 Jul; 10(7):1625-41. PubMed ID: 26771926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of Mineral-Bound Iron to a Snow Algal-Bacterial Coculture and Implications for Albedo-Altering Snow Algal Blooms.
    Harrold ZR; Hausrath EM; Garcia AH; Murray AE; Tschauner O; Raymond JA; Huang S
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt.
    Broadbent AAD; Snell HSK; Michas A; Pritchard WJ; Newbold L; Cordero I; Goodall T; Schallhart N; Kaufmann R; Griffiths RI; Schloter M; Bahn M; Bardgett RD
    ISME J; 2021 Aug; 15(8):2264-2275. PubMed ID: 33619353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits.
    Van den Wyngaert S; Ganzert L; Seto K; Rojas-Jimenez K; Agha R; Berger SA; Woodhouse J; Padisak J; Wurzbacher C; Kagami M; Grossart HP
    ISME J; 2022 Sep; 16(9):2242-2254. PubMed ID: 35764676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan.
    Nakashima T; Uetake J; Segawa T; Procházková L; Tsushima A; Takeuchi N
    Front Plant Sci; 2021; 12():689119. PubMed ID: 34290725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Summer Dynamics of Microbial Diversity on a Mountain Glacier.
    Hotaling S; Price TL; Hamilton TL
    mSphere; 2022 Dec; 7(6):e0050322. PubMed ID: 36342146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.