These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37409208)

  • 41. Central Corneal Thickness Measurements with Different Imaging Devices: Ultrasound Pachymetry, Noncontact Specular Microscopy, and Tono-Pachymetry.
    Ceylan A; Onal I; Mergen B; Yildirim Y
    Beyoglu Eye J; 2022; 7(1):54-58. PubMed ID: 35265803
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Corneal thickness measurements with the RTVue, Casia-2, and Pentacam devices in patients with mild-to-moderate keratoconus: a comparative study.
    Sun B; Zhang X; Sun L; Huang Y; Tian M; Shen Y; Ding L; Zhou X
    BMC Ophthalmol; 2023 Jan; 23(1):36. PubMed ID: 36703165
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Central corneal thickness measurement using ultrasonic pachymeter, optical coherence tomography, and TMS-5 topographer.
    Binnawi KH; Elzubeir H; Osman E; Abdu M; Abdu M
    Oman J Ophthalmol; 2019; 12(1):15-19. PubMed ID: 30787529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry.
    Grewal DS; Brar GS; Grewal SP
    J Cataract Refract Surg; 2010 Jun; 36(6):954-64. PubMed ID: 20494767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry.
    Strom AR; Cortés DE; Rasmussen CA; Thomasy SM; McIntyre K; Lee SF; Kass PH; Mannis MJ; Murphy CJ
    Vet Ophthalmol; 2016 Jan; 19(1):50-6. PubMed ID: 25676065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of corneal thickness measurements using ultrasound pachymetry, noncontact tonopachy, Pentacam HR, and Fourier-domain OCT.
    Kim JS; Rho CR; Cho YW; Shin J
    Medicine (Baltimore); 2021 Apr; 100(16):e25638. PubMed ID: 33879743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of central corneal thickness using anterior segment optical coherence tomography vs ultrasound pachymetry.
    Kim HY; Budenz DL; Lee PS; Feuer WJ; Barton K
    Am J Ophthalmol; 2008 Feb; 145(2):228-232. PubMed ID: 18054888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of central corneal thickness measurements using ultrasound pachymetry, ultrasound biomicroscopy, and the Artemis-2 VHF scanner in normal eyes.
    Al-Farhan HM; Al-Otaibi WM
    Clin Ophthalmol; 2012; 6():1037-43. PubMed ID: 22848145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Central corneal thickness measurements in normal dogs: a comparison between ultrasound pachymetry and optical coherence tomography.
    Alario AF; Pirie CG
    Vet Ophthalmol; 2014 May; 17(3):207-11. PubMed ID: 23763504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Canine central corneal thickness measurements via Pentacam-HR
    Wolfel AE; Pederson SL; Cleymaet AM; Hess AM; Freeman KS
    Vet Ophthalmol; 2018 Jul; 21(4):362-370. PubMed ID: 29034562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes.
    Prospero Ponce CM; Rocha KM; Smith SD; Krueger RR
    J Cataract Refract Surg; 2009 Jun; 35(6):1055-62. PubMed ID: 19465292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of central corneal thickness measured using noncontact methods and ultrasonic pachymetry.
    Toptan M; Simsek A
    Niger J Clin Pract; 2021 Oct; 24(10):1506-1510. PubMed ID: 34657017
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of central corneal thickness in healthy eyes using ultrasound pachymetry, non-contact specular microscopy and a high-resolution Scheimpflug camera.
    Soulantzou K; Plakitsi A; Chalkiadaki E; Anastasopoulou M; Karmiris E
    Int Ophthalmol; 2023 Feb; 43(2):363-370. PubMed ID: 35864284
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Agreement and Repeatability of Corneal Thickness and Radius among Three Different Corneal Measurement Devices.
    Biswas S; Biswas P
    Optom Vis Sci; 2021 Oct; 98(10):1196-1202. PubMed ID: 34620779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of anterior segment parameters with two anterior segment optical coherence tomography systems: Visante and Casia, in primary angle closure disease.
    Angmo D; Singh R; Chaurasia S; Yadav S; Dada T
    Indian J Ophthalmol; 2019 Apr; 67(4):500-504. PubMed ID: 30900582
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of Optical Low-Coherence Reflectometry and Swept-Source OCT-Based Biometry Devices in Dense Cataracts.
    Vasavada SA; Patel P; Vaishnav VR; Ashena Z; Srivastava S; Vasavada V; Nanavaty MA
    J Refract Surg; 2020 Aug; 36(8):557-564. PubMed ID: 32785730
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of central corneal thickness measurements by Pentacam, noncontact specular microscope, and ultrasound pachymetry in normal and post-LASIK eyes.
    Al-Ageel S; Al-Muammar AM
    Saudi J Ophthalmol; 2009 Oct; 23(3-4):181-7. PubMed ID: 23960858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of the anterior ocular segment measurements using swept-source optical coherent tomography and a scanning peripheral anterior chamber depth analyzer.
    Furuya T; Mabuchi F; Chiba T; Kogure S; Tsukahara S; Kashiwagi K
    Jpn J Ophthalmol; 2011 Sep; 55(5):472-479. PubMed ID: 21830059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of Anterior Ocular Biometric Measurements Using Swept-Source and Time-Domain Optical Coherence Tomography.
    Chen S; Gao R; McAlinden C; Ye J; Wang Y; Chen M; Huang J; Sun Y; Yu AY
    J Ophthalmol; 2020; 2020():9739878. PubMed ID: 32953169
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Central corneal thickness and anterior chamber depth measurement by Sirius(®) Scheimpflug tomography and ultrasound.
    Jorge J; Rosado J; Díaz-Rey J; González-Méijome J
    Clin Ophthalmol; 2013; 7():417-22. PubMed ID: 23467857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.