These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 37409308)

  • 1. Targeted genome editing in polyploids: lessons from
    Ahmad N; Fatima S; Mehmood MA; Zaman QU; Atif RM; Zhou W; Rahman MU; Gill RA
    Front Plant Sci; 2023; 14():1152468. PubMed ID: 37409308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing for Crop Improvement - Applications in Clonally Propagated Polyploids With a Focus on Potato (
    Nadakuduti SS; Buell CR; Voytas DF; Starker CG; Douches DS
    Front Plant Sci; 2018; 9():1607. PubMed ID: 30483283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing of polyploid crops: prospects, achievements and bottlenecks.
    Schaart JG; van de Wiel CCM; Smulders MJM
    Transgenic Res; 2021 Aug; 30(4):337-351. PubMed ID: 33846956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus.
    Weeks DP
    Prog Mol Biol Transl Sci; 2017; 149():65-80. PubMed ID: 28712501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects.
    May D; Paldi K; Altpeter F
    Plant Genome; 2023 Jun; 16(2):e20298. PubMed ID: 36692095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses.
    Hamdan MF; Karlson CKS; Teoh EY; Lau SE; Tan BC
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing.
    Chincinska IA; Miklaszewska M; Sołtys-Kalina D
    Planta; 2022 Dec; 257(1):25. PubMed ID: 36562862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Improvement of Crops Using the CRISPR/Cas System: New Target Genes].
    Ukhatova YV; Erastenkova MV; Korshikova ES; Krylova EA; Mikhailova AS; Semilet TV; Tikhonova NG; Shvachko NA; Khlestkina EK
    Mol Biol (Mosk); 2023; 57(3):387-410. PubMed ID: 37326044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brassica carinata genome characterization clarifies U's triangle model of evolution and polyploidy in Brassica.
    Song X; Wei Y; Xiao D; Gong K; Sun P; Ren Y; Yuan J; Wu T; Yang Q; Li X; Nie F; Li N; Feng S; Pei Q; Yu T; Zhang C; Liu T; Wang X; Yang J
    Plant Physiol; 2021 May; 186(1):388-406. PubMed ID: 33599732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches.
    Das T; Anand U; Pal T; Mandal S; Kumar M; Radha ; Gopalakrishnan AV; Lastra JMP; Dey A
    Biotechnol Bioeng; 2023 May; 120(5):1215-1228. PubMed ID: 36740587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture.
    Rao MJ; Wang L
    Planta; 2021 Sep; 254(4):68. PubMed ID: 34498163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recalcitrance to transformation, a hindrance for genome editing of legumes.
    Nivya VM; Shah JM
    Front Genome Ed; 2023; 5():1247815. PubMed ID: 37810593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Editing for Sustainable Agriculture in Africa.
    Tripathi L; Dhugga KS; Ntui VO; Runo S; Syombua ED; Muiruri S; Wen Z; Tripathi JN
    Front Genome Ed; 2022; 4():876697. PubMed ID: 35647578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current achievements and future prospects of genetic engineering in Indian mustard (Brassica juncea L. Czern & Coss.).
    Thakur AK; Parmar N; Singh KH; Nanjundan J
    Planta; 2020 Sep; 252(4):56. PubMed ID: 32951089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update.
    Chaudhary M; Mukherjee TK; Singh R; Gupta M; Goyal S; Singhal P; Kumar R; Bhusal N; Sharma P
    Mol Biol Rep; 2022 Jul; 49(7):7101-7110. PubMed ID: 35568789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects.
    Singha DL; Das D; Sarki YN; Chowdhury N; Sharma M; Maharana J; Chikkaputtaiah C
    Planta; 2021 Dec; 255(1):28. PubMed ID: 34962611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome editing in grass plants.
    Char SN; Yang B
    aBIOTECH; 2020 Jan; 1(1):41-57. PubMed ID: 36305004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.