BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37409517)

  • 1. Critical Issues of Vanadium-Based Cathodes Towards Practical Aqueous Zn-Ion Batteries.
    Jiang W; Zhu K; Yang W
    Chemistry; 2023 Oct; 29(56):e202301769. PubMed ID: 37409517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries.
    Wan F; Niu Z
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16358-16367. PubMed ID: 31050086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathodes for Aqueous Zn-Ion Batteries: Materials, Mechanisms, and Kinetics.
    Zuo S; Xu X; Ji S; Wang Z; Liu Z; Liu J
    Chemistry; 2021 Jan; 27(3):830-860. PubMed ID: 32830335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterojunction tunnelled vanadium-based cathode materials for high-performance aqueous zinc ion batteries.
    Hu H; Zhao P; Li X; Liu J; Liu H; Sun B; Pan K; Song K; Cheng H
    J Colloid Interface Sci; 2024 Jul; 665():564-572. PubMed ID: 38552573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance.
    Mallick S; Raj CR
    ChemSusChem; 2021 May; 14(9):1987-2022. PubMed ID: 33725419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries.
    Hao J; Yuan L; Johannessen B; Zhu Y; Jiao Y; Ye C; Xie F; Qiao SZ
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25114-25121. PubMed ID: 34553459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-Ion Batteries.
    Sun Q; Cheng H; Nie W; Lu X; Zhao H
    Chem Asian J; 2022 Apr; 17(7):e202200067. PubMed ID: 35188329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress on Phosphate Cathode Materials for Aqueous Zinc-Ion Batteries.
    Ou L; Ou H; Qin M; Liu Z; Fang G; Cao X; Liang S
    ChemSusChem; 2022 Oct; 15(19):e202201184. PubMed ID: 35934677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material Design and Energy Storage Mechanism of Mn-Based Cathodes for Aqueous Zinc-Ion Batteries.
    Xie S; Li X; Li Y; Liang Q; Dong L
    Chem Rec; 2022 Oct; 22(10):e202200201. PubMed ID: 36126168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tremella-like Hydrated Vanadium Oxide Cathode with an Architectural Design Strategy toward Ultralong Lifespan Aqueous Zinc-Ion Batteries.
    Guan X; Sun Q; Sun C; Duan T; Nie W; Liu Y; Zhao K; Cheng H; Lu X
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41688-41697. PubMed ID: 34436858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries.
    Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress.
    Ho VC; Lim H; Kim MJ; Mun J
    Chem Asian J; 2022 Jul; 17(14):e202200289. PubMed ID: 35546083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the kinetics of vanadium oxides via conducting polymer and metal ions co-intercalation for high-performance aqueous zinc-ions batteries.
    Yan X; Feng X; Hao B; Liu J; Yu Y; Qi J; Wang H; Wang Z; Hu Y; Fan X; Li C; Liu J
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):204-213. PubMed ID: 35988515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting Zn
    Cao J; Zhang D; Yue Y; Pakornchote T; Bovornratanaraks T; Zhang X; Zeng Z; Qin J; Huang Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7909-7916. PubMed ID: 35103464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode.
    Xia C; Guo J; Li P; Zhang X; Alshareef HN
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3943-3948. PubMed ID: 29432667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Developments and Challenges of Vanadium Oxides (V
    Zhou T; Han Q; Xie L; Yang X; Zhu L; Cao X
    Chem Rec; 2022 Apr; 22(4):e202100275. PubMed ID: 34962053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries.
    Dou X; Xie X; Liang S; Fang G
    Sci Bull (Beijing); 2024 Mar; 69(6):833-845. PubMed ID: 38302333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Electrolytes for "Beyond Aqueous" Zinc-Ion Batteries.
    Lv Y; Xiao Y; Ma L; Zhi C; Chen S
    Adv Mater; 2022 Jan; 34(4):e2106409. PubMed ID: 34806240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic-Inorganic Hybrid Cathode with Dual Energy-Storage Mechanism for Ultrahigh-Rate and Ultralong-Life Aqueous Zinc-Ion Batteries.
    Ma X; Cao X; Yao M; Shan L; Shi X; Fang G; Pan A; Lu B; Zhou J; Liang S
    Adv Mater; 2022 Feb; 34(6):e2105452. PubMed ID: 34786778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H
    Gao X; Wu H; Li W; Tian Y; Zhang Y; Wu H; Yang L; Zou G; Hou H; Ji X
    Small; 2020 Feb; 16(5):e1905842. PubMed ID: 31916666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.