These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 37409655)
41. Emerging Heterogeneous Supports for Efficient Electrocatalysis. Fan M; Cui L; He X; Zou X Small Methods; 2022 Oct; 6(10):e2200855. PubMed ID: 36070422 [TBL] [Abstract][Full Text] [Related]
42. Hidden Impurities Generate False Positives in Single Atom Catalyst Imaging. Allasia N; Collins SM; Ramasse QM; Vilé G Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202404883. PubMed ID: 38747260 [TBL] [Abstract][Full Text] [Related]
43. Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Lee WH; Ko YJ; Kim JY; Min BK; Hwang YJ; Oh HS Chem Commun (Camb); 2020 Oct; 56(84):12687-12697. PubMed ID: 32985636 [TBL] [Abstract][Full Text] [Related]
44. Controlled Modification of Axial Coordination for Transition-Metal Single-Atom Electrocatalyst. Liu X; Liu Y; Yang W; Feng X; Wang B Chemistry; 2022 Oct; 28(59):e202201471. PubMed ID: 35707987 [TBL] [Abstract][Full Text] [Related]
45. Elucidation of Metal Local Environments in Single-Atom Catalysts Based on Carbon Nitrides. Büchele S; Yakimov A; Collins SM; Ruiz-Ferrando A; Chen Z; Willinger E; Kepaptsoglou DM; Ramasse QM; Müller CR; Safonova OV; López N; Copéret C; Pérez-Ramírez J; Mitchell S Small; 2022 Aug; 18(33):e2202080. PubMed ID: 35678101 [TBL] [Abstract][Full Text] [Related]
46. Versatile Applications of Metal Single-Atom @ 2D Material Nanoplatforms. Zhang B; Fan T; Xie N; Nie G; Zhang H Adv Sci (Weinh); 2019 Nov; 6(21):1901787. PubMed ID: 31728296 [TBL] [Abstract][Full Text] [Related]
47. Single-Atom and Dual-Atom Electrocatalysts Derived from Metal Organic Frameworks: Current Progress and Perspectives. Chen S; Cui M; Yin Z; Xiong J; Mi L; Li Y ChemSusChem; 2021 Jan; 14(1):73-93. PubMed ID: 33089643 [TBL] [Abstract][Full Text] [Related]
48. Ultrafast plasma method allows rapid immobilization of monatomic copper on carboxyl-deficient g-C Xu S; Zhang Z; Wang D; Lu J; Guo Y; Kang S; Chang X Front Chem; 2022; 10():972496. PubMed ID: 36092656 [TBL] [Abstract][Full Text] [Related]
49. Synergistic Effect of Boron Nitride and Carbon Domains in Boron Carbide Nitride Nanotube Supported Single-Atom Catalysts for Efficient Nitrogen Fixation. Liu T; Dang Q; Zhou X; Li J; Ge Z; Che H; Tang S; Luo Y; Jiang J Chemistry; 2021 Apr; 27(23):6945-6953. PubMed ID: 33565653 [TBL] [Abstract][Full Text] [Related]
50. Designed Synthesis and Catalytic Mechanisms of Non-Precious Metal Single-Atom Catalysts for Oxygen Reduction Reaction. Tong M; Wang L; Fu H Small Methods; 2021 Oct; 5(10):e2100865. PubMed ID: 34927931 [TBL] [Abstract][Full Text] [Related]
51. Ligand-Metal Charge Transfer Induced Liu J; Zou Y; Cruz D; Savateev A; Antonietti M; Vilé G ACS Appl Mater Interfaces; 2021 Jun; 13(22):25858-25867. PubMed ID: 34028257 [TBL] [Abstract][Full Text] [Related]
52. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Wang Y; Mao J; Meng X; Yu L; Deng D; Bao X Chem Rev; 2019 Feb; 119(3):1806-1854. PubMed ID: 30575386 [TBL] [Abstract][Full Text] [Related]
53. Inter-Metal Interaction of Dual-Atom Catalysts in Heterogeneous Catalysis. Chen Y; Lin J; Pan Q; Liu X; Ma T; Wang X Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202306469. PubMed ID: 37312248 [TBL] [Abstract][Full Text] [Related]
54. Carbon and Oxygen Coordinating Atoms Adjust Transition Metal Single-Atom Catalysts Based On Boron Nitride Monolayers for Highly Efficient CO Wang W; Li D; Cui T ACS Appl Mater Interfaces; 2021 Apr; 13(16):18934-18943. PubMed ID: 33852266 [TBL] [Abstract][Full Text] [Related]
55. Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion. Kim J; Choi S; Cho J; Kim SY; Jang HW ACS Mater Au; 2022 Jan; 2(1):1-20. PubMed ID: 36855696 [TBL] [Abstract][Full Text] [Related]
56. Spatially Confined Formation of Single Atoms in Highly Porous Carbon Nitride Nanoreactors. Zuo Y; Li T; Zhang N; Jing T; Rao D; Schmuki P; Kment Š; Zbořil R; Chai Y ACS Nano; 2021 Apr; 15(4):7790-7798. PubMed ID: 33871974 [TBL] [Abstract][Full Text] [Related]
57. Promoting Dinuclear-Type Catalysis in Cu Song J; Chen Z; Cai X; Zhou X; Zhan G; Li R; Wei P; Yan N; Xi S; Loh KP Adv Mater; 2022 Aug; 34(33):e2204638. PubMed ID: 35748197 [TBL] [Abstract][Full Text] [Related]
58. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Qin R; Liu K; Wu Q; Zheng N Chem Rev; 2020 Nov; 120(21):11810-11899. PubMed ID: 32786345 [TBL] [Abstract][Full Text] [Related]
59. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis. Zhang W; Chao Y; Zhang W; Zhou J; Lv F; Wang K; Lin F; Luo H; Li J; Tong M; Wang E; Guo S Adv Mater; 2021 Sep; 33(36):e2102576. PubMed ID: 34296795 [TBL] [Abstract][Full Text] [Related]
60. Surface Engineered Single-atom Systems for Energy Conversion. Yu Y; Zhu Z; Huang H Adv Mater; 2024 Apr; 36(16):e2311148. PubMed ID: 38197471 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]