These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 37409696)
21. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Ortiz N; Armada E; Duque E; Roldán A; Azcón R J Plant Physiol; 2015 Feb; 174():87-96. PubMed ID: 25462971 [TBL] [Abstract][Full Text] [Related]
22. In Vivo Modulation of Arbuscular Mycorrhizal Symbiosis and Soil Quality by Fungal P Solubilizers. Della Mónica IF; Godeas AM; Scervino JM Microb Ecol; 2020 Jan; 79(1):21-29. PubMed ID: 31218384 [TBL] [Abstract][Full Text] [Related]
23. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Bárzana G; Aroca R; Paz JA; Chaumont F; Martinez-Ballesta MC; Carvajal M; Ruiz-Lozano JM Ann Bot; 2012 Apr; 109(5):1009-17. PubMed ID: 22294476 [TBL] [Abstract][Full Text] [Related]
24. Atmospheric drought and low light impede mycorrhizal effects on leaf photosynthesis-a glasshouse study on tomato under naturally fluctuating environmental conditions. Bitterlich M; Franken P; Graefe J Mycorrhiza; 2019 Jan; 29(1):13-28. PubMed ID: 30382414 [TBL] [Abstract][Full Text] [Related]
25. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Huang D; Ma M; Wang Q; Zhang M; Jing G; Li C; Ma F Plant Physiol Biochem; 2020 Apr; 149():245-255. PubMed ID: 32087536 [TBL] [Abstract][Full Text] [Related]
26. Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Boutasknit A; Baslam M; Ait-El-Mokhtar M; Anli M; Ben-Laouane R; Ait-Rahou Y; Mitsui T; Douira A; El Modafar C; Wahbi S; Meddich A Sci Rep; 2021 Nov; 11(1):22835. PubMed ID: 34819547 [TBL] [Abstract][Full Text] [Related]
27. Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. El-Mesbahi MN; Azcón R; Ruiz-Lozano JM; Aroca R Mycorrhiza; 2012 Oct; 22(7):555-64. PubMed ID: 22370879 [TBL] [Abstract][Full Text] [Related]
28. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Khalvati MA; Hu Y; Mozafar A; Schmidhalter U Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474 [TBL] [Abstract][Full Text] [Related]
29. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Delavaux CS; Smith-Ramesh LM; Kuebbing SE Ecology; 2017 Aug; 98(8):2111-2119. PubMed ID: 28500779 [TBL] [Abstract][Full Text] [Related]
30. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Querejeta JI; Egerton-Warburton LM; Allen MF Ecology; 2009 Mar; 90(3):649-62. PubMed ID: 19341136 [TBL] [Abstract][Full Text] [Related]
31. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Duc NH; Csintalan Z; Posta K Plant Physiol Biochem; 2018 Nov; 132():297-307. PubMed ID: 30245343 [TBL] [Abstract][Full Text] [Related]
32. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Zou YN; Wu QS; Kuča K Plant Biol (Stuttg); 2021 May; 23 Suppl 1():50-57. PubMed ID: 32745347 [TBL] [Abstract][Full Text] [Related]
33. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Augé RM; Toler HD; Saxton AM Mycorrhiza; 2015 Jan; 25(1):13-24. PubMed ID: 24831020 [TBL] [Abstract][Full Text] [Related]
34. Arbuscular Mycorrhizal Fungi Improve the Growth, Water Status, and Nutrient Uptake of Xiao X; Liao X; Yan Q; Xie Y; Chen J; Liang G; Chen M; Xiao S; Chen Y; Liu J J Fungi (Basel); 2023 Mar; 9(3):. PubMed ID: 36983489 [TBL] [Abstract][Full Text] [Related]
35. Bioprospecting for plant resilience to climate change: mycorrhizal symbionts of European and American beachgrass (Ammophila arenaria and Ammophila breviligulata) from maritime sand dunes. Grassi A; Pagliarani I; Avio L; Cristani C; Rossi F; Turrini A; Giovannetti M; Agnolucci M Mycorrhiza; 2024 Jun; 34(3):159-171. PubMed ID: 38625427 [TBL] [Abstract][Full Text] [Related]
36. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Verzeaux J; Hirel B; Dubois F; Lea PJ; Tétu T Plant Sci; 2017 Nov; 264():48-56. PubMed ID: 28969802 [TBL] [Abstract][Full Text] [Related]
37. Growth and Photosynthetic Activity of Selected Spelt Varieties ( Ratajczak K; Sulewska H; Błaszczyk L; Basińska-Barczak A; Mikołajczak K; Salamon S; Szymańska G; Dryjański L Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121138 [TBL] [Abstract][Full Text] [Related]
38. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. Kakouridis A; Hagen JA; Kan MP; Mambelli S; Feldman LJ; Herman DJ; Weber PK; Pett-Ridge J; Firestone MK New Phytol; 2022 Oct; 236(1):210-221. PubMed ID: 35633108 [TBL] [Abstract][Full Text] [Related]
39. Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with Bacillus thuringiensis toxin genes. Cheeke TE; Schütte UM; Hemmerich CM; Cruzan MB; Rosenstiel TN; Bever JD Mol Ecol; 2015 May; 24(10):2580-93. PubMed ID: 25827202 [TBL] [Abstract][Full Text] [Related]