BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37409777)

  • 1. Cobalt-Catalyzed Wagner-Meerwein Rearrangements with Concomitant Nucleophilic Hydrofluorination.
    Hoogesteger RH; Murdoch N; Cordes DB; Johnston CP
    Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202308048. PubMed ID: 37409777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective Aryl-Iodide-Catalyzed Wagner-Meerwein Rearrangements.
    Sharma HA; Mennie KM; Kwan EE; Jacobsen EN
    J Am Chem Soc; 2020 Sep; 142(37):16090-16096. PubMed ID: 32845619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophilic Fluorination of Alkenes via Bora-Wagner-Meerwein Rearrangement. Access to β-Difluoroalkyl Boronates.
    Wang Q; Biosca M; Himo F; Szabó KJ
    Angew Chem Int Ed Engl; 2021 Dec; 60(50):26327-26331. PubMed ID: 34613633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Synthesis of Azepine-Fused Cyclobutanes from Yne-Methylenecyclopropanes Involving Cyclopropanation/C-C Cleavage/Wagner-Meerwein Rearrangement and Reaction Mechanism.
    Li CL; Yu ZX
    J Org Chem; 2019 Aug; 84(16):9913-9928. PubMed ID: 31347844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bismuth triflate-catalyzed Wagner-Meerwein rearrangement in terpenes. Application to the synthesis of the 18alpha-oleanane core and A-neo-18alpha-oleanene compounds from lupanes.
    Salvador JA; Pinto RM; Santos RC; Le Roux C; Beja AM; Paixão JA
    Org Biomol Chem; 2009 Feb; 7(3):508-17. PubMed ID: 19156317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Valent Palladium-Promoted Formal Wagner-Meerwein Rearrangement.
    Wu H; Yang B; Zhu L; Lu R; Li G; Lu H
    Org Lett; 2016 Nov; 18(22):5804-5807. PubMed ID: 27796096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of Cp*Rh
    Wang X; Lerchen A; Gensch T; Knecht T; Daniliuc CG; Glorius F
    Angew Chem Int Ed Engl; 2017 Jan; 56(5):1381-1384. PubMed ID: 28000979
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Lin PP; Huang LL; Feng SX; Yang S; Wang H; Huang ZS; Li Q
    Org Lett; 2021 Apr; 23(8):3088-3093. PubMed ID: 33793241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. I
    Zhou Y; Lei SG; Wang LS; Ma JT; Yu ZC; Wu YD; Wu AX
    Org Lett; 2023 May; 25(19):3386-3390. PubMed ID: 37154544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wagner-Meerwein-Type Rearrangements of Germapolysilanes - A Stable Ion Study.
    Albers L; Meshgi MA; Baumgartner J; Marschner C; Müller T
    Organometallics; 2015 Aug; 34(15):3756-3763. PubMed ID: 26294805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium-Catalyzed Electrooxidative Hydrofluorination of Aryl-Substituted Alkenes with a Nucleophilic Fluorine Source.
    Mandal A; Jang J; Yang B; Kim H; Shin K
    Org Lett; 2023 Jan; 25(1):195-199. PubMed ID: 36583971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal catalysis and nucleophilic fluorination.
    Hollingworth C; Gouverneur V
    Chem Commun (Camb); 2012 Mar; 48(24):2929-42. PubMed ID: 22334339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion-Energy-Driven Wagner-Meerwein Rearrangements in Oligosilanes.
    Albers L; Rathjen S; Baumgartner J; Marschner C; Müller T
    J Am Chem Soc; 2016 Jun; 138(21):6886-92. PubMed ID: 27195490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst-Controlled Divergent Generations and Transformations of α-Carbonyl Cations from Alkynes.
    Zhou J; Wang W; Zuo F; Liu S; Mosim Amin P; Zhong K; Bai R; Wang Y
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202302545. PubMed ID: 37856619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Cardiopetaline via a Wagner-Meerwein Rearrangement without Preactivation of the Pivotal Hydroxy Group.
    Nishiyama Y; Yokoshima S; Fukuyama T
    Org Lett; 2017 Nov; 19(21):5833-5835. PubMed ID: 29039205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyst-free geminal aminofluorination of ortho-sulfonamide-tethered alkylidenecyclopropanes via a Wagner-Meerwein rearrangement.
    Fan X; Wang Q; Wei Y; Shi M
    Chem Commun (Camb); 2018 Sep; 54(74):10503-10506. PubMed ID: 30160273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt-catalyzed hydrofluorination of unactivated olefins: a radical approach of fluorine transfer.
    Shigehisa H; Nishi E; Fujisawa M; Hiroya K
    Org Lett; 2013 Oct; 15(20):5158-61. PubMed ID: 24079447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Essence in Selectivity of Copper-Mediated Intermolecular Nucleophilic Substitution of a
    Huang G; Fang Y; Wright JS; Ni SF; Li MD; Dang L
    J Phys Chem A; 2023 Nov; 127(45):9473-9482. PubMed ID: 37824456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective organocatalytic fluorination-induced Wagner-Meerwein rearrangement.
    Romanov-Michailidis F; Guénée L; Alexakis A
    Angew Chem Int Ed Engl; 2013 Aug; 52(35):9266-70. PubMed ID: 23852804
    [No Abstract]   [Full Text] [Related]  

  • 20. Theoretical study of the role of solvent H2O in neopentyl and pinacol rearrangements.
    Yamabe S; Tsuchida N; Yamazaki S
    J Comput Chem; 2007 Jul; 28(9):1561-1571. PubMed ID: 17345571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.