These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37410093)

  • 1. Remapping in a recurrent neural network model of navigation and context inference.
    Low IIC; Giocomo LM; Williams AH
    Elife; 2023 Jul; 12():. PubMed ID: 37410093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remapping in a recurrent neural network model of navigation and context inference.
    Low IIC; Giocomo LM; Williams AH
    bioRxiv; 2023 May; ():. PubMed ID: 36747825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic and reversible remapping of network representations in an unchanging environment.
    Low IIC; Williams AH; Campbell MG; Linderman SW; Giocomo LM
    Neuron; 2021 Sep; 109(18):2967-2980.e11. PubMed ID: 34363753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing distance information from landmarks and self-motion cues - Differential contributions of anterior-lateral vs. posterior-medial entorhinal cortex in humans.
    Chen X; Vieweg P; Wolbers T
    Neuroimage; 2019 Nov; 202():116074. PubMed ID: 31386919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-tuned neuronal firing encodes human contextual representations for navigational goals.
    Watrous AJ; Miller J; Qasim SE; Fried I; Jacobs J
    Elife; 2018 Jun; 7():. PubMed ID: 29932417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular Network between Postrhinal Visual Cortex, Amygdala, and Entorhinal Cortex.
    Meier AM; Wang Q; Ji W; Ganachaud J; Burkhalter A
    J Neurosci; 2021 Jun; 41(22):4809-4825. PubMed ID: 33849948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit.
    Aronov D; Nevers R; Tank DW
    Nature; 2017 Mar; 543(7647):719-722. PubMed ID: 28358077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grid-Cell Activity on Linear Tracks Indicates Purely Translational Remapping of 2D Firing Patterns at Movement Turning Points.
    Pröll M; Häusler S; Herz AVM
    J Neurosci; 2018 Aug; 38(31):7004-7011. PubMed ID: 29976622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic FPGA-based spatial navigation model with grid cells and place cells.
    Krishna A; Mittal D; Virupaksha SG; Nair AR; Narayanan R; Thakur CS
    Neural Netw; 2021 Jul; 139():45-63. PubMed ID: 33677378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain.
    Viganò S; Piazza M
    J Neurosci; 2020 Mar; 40(13):2727-2736. PubMed ID: 32060171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals.
    Mallory CS; Hardcastle K; Campbell MG; Attinger A; Low IIC; Raymond JL; Giocomo LM
    Nat Commun; 2021 Jan; 12(1):671. PubMed ID: 33510164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compromised Grid-Cell-like Representations in Old Age as a Key Mechanism to Explain Age-Related Navigational Deficits.
    Stangl M; Achtzehn J; Huber K; Dietrich C; Tempelmann C; Wolbers T
    Curr Biol; 2018 Apr; 28(7):1108-1115.e6. PubMed ID: 29551413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex.
    Pérez-Escobar JA; Kornienko O; Latuske P; Kohler L; Allen K
    Elife; 2016 Jul; 5():. PubMed ID: 27449281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mental navigation in the primate entorhinal cortex.
    Neupane S; Fiete I; Jazayeri M
    Nature; 2024 Jun; 630(8017):704-711. PubMed ID: 38867051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parahippocampal neurons encode task-relevant information for goal-directed navigation.
    Gonzalez A; Giocomo LM
    Elife; 2024 Feb; 12():. PubMed ID: 38363198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality.
    Kinkhabwala AA; Gu Y; Aronov D; Tank DW
    Elife; 2020 Mar; 9():. PubMed ID: 32149601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A connectome of the
    Hulse BK; Haberkern H; Franconville R; Turner-Evans D; Takemura SY; Wolff T; Noorman M; Dreher M; Dan C; Parekh R; Hermundstad AM; Rubin GM; Jayaraman V
    Elife; 2021 Oct; 10():. PubMed ID: 34696823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remembered reward locations restructure entorhinal spatial maps.
    Butler WN; Hardcastle K; Giocomo LM
    Science; 2019 Mar; 363(6434):1447-1452. PubMed ID: 30923222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippocampal remapping and grid realignment in entorhinal cortex.
    Fyhn M; Hafting T; Treves A; Moser MB; Moser EI
    Nature; 2007 Mar; 446(7132):190-4. PubMed ID: 17322902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.