BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37410158)

  • 1. Selection of Antarctic yeasts as gray mold biocontrol agents in strawberry.
    Ferreira EMS; Garmendia G; Gonçalves VN; da Silva JFM; Rosa LH; Vero S; Pimenta RS
    Extremophiles; 2023 Jul; 27(2):16. PubMed ID: 37410158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits.
    Ruiz-Moyano S; Hernández A; Galvan AI; Córdoba MG; Casquete R; Serradilla MJ; Martín A
    Food Microbiol; 2020 Dec; 92():103556. PubMed ID: 32950150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bee-Vectored
    Iqbal M; Jützeler M; França SC; Wäckers F; Andreasson E; Stenberg JA
    Phytopathology; 2022 Feb; 112(2):232-237. PubMed ID: 34181440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries.
    Oro L; Feliziani E; Ciani M; Romanazzi G; Comitini F
    Int J Food Microbiol; 2018 Jan; 265():18-22. PubMed ID: 29107842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast biocontrol of fungal spoilage of pears stored at low temperature.
    Robiglio A; Sosa MC; Lutz MC; Lopes CA; Sangorrín MP
    Int J Food Microbiol; 2011 Jun; 147(3):211-6. PubMed ID: 21546110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening and Evaluation of Yeast Antagonists for Biological Control of
    Chen PH; Chen RY; Chou JY
    Mycobiology; 2018; 46(1):33-46. PubMed ID: 29998031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Report of Fludioxonil Resistance in Botrytis cinerea, the Causal Agent of Gray Mold, from Strawberry Fields in Maryland and South Carolina.
    Fernández-Ortuño D; Grabke A; Bryson PK; Rouse RJ; Rollins P; Schnabel G
    Plant Dis; 2014 May; 98(5):692. PubMed ID: 30708511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.
    Wang X; Glawe DA; Kramer E; Weller D; Okubara PA
    Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of Natamycin Against Gray Mold of Stored Mandarin Fruit Caused by Isolates of
    Saito S; Wang F; Xiao CL
    Plant Dis; 2020 Mar; 104(3):787-792. PubMed ID: 31940447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocontrol of strawberry gray mold caused by
    Yong D; Li Y; Gong K; Yu Y; Zhao S; Duan Q; Ren C; Li A; Fu J; Ni J; Zhang Y; Li R
    Front Microbiol; 2022; 13():1051730. PubMed ID: 36406410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gray mold populations in german strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea.
    Leroch M; Plesken C; Weber RW; Kauff F; Scalliet G; Hahn M
    Appl Environ Microbiol; 2013 Jan; 79(1):159-67. PubMed ID: 23087030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays.
    Parafati L; Vitale A; Restuccia C; Cirvilleri G
    Food Microbiol; 2017 May; 63():191-198. PubMed ID: 28040168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry.
    Moussa SH; Tayel AA; Alsohim AS; Abdallah RR
    J Food Sci; 2013 Oct; 78(10):M1589-M1594. PubMed ID: 24025030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocontrol potential of
    Ajijah N; Fiodor A; Dziurzynski M; Stasiuk R; Pawlowska J; Dziewit L; Pranaw K
    Front Plant Sci; 2023; 14():1288408. PubMed ID: 38143572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry.
    Feliziani E; Landi L; Romanazzi G
    Carbohydr Polym; 2015 Nov; 132():111-7. PubMed ID: 26256331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production.
    Qin X; Xiao H; Cheng X; Zhou H; Si L
    Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica).
    Vero S; Garmendia G; González MB; Bentancur O; Wisniewski M
    FEMS Yeast Res; 2013 Mar; 13(2):189-99. PubMed ID: 23136855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Quality Genome Resource of
    Wu Y; Saski C; Schnabel G; Xiao S; Hu M
    Phytopathology; 2021 Mar; 111(3):496-499. PubMed ID: 32648525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocontrol Efficacy of Antagonist Yeasts to Gray Mold and Blue Mold on Apples and Pears in Controlled Atmospheres.
    Tian S; Fan Q; Xu Y; Liu H
    Plant Dis; 2002 Aug; 86(8):848-853. PubMed ID: 30818637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.