These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 37410253)
1. Comparison of the functions of plasma membrane and vacuolar membrane lipids in plant cell protection against hyperosmotic stress. Ozolina NV; Kapustina IS; Gurina VV; Spiridonova EV; Nurminsky VN Planta; 2023 Jul; 258(2):39. PubMed ID: 37410253 [TBL] [Abstract][Full Text] [Related]
2. Role of tonoplast microdomains in plant cell protection against osmotic stress. Ozolina NV; Kapustina IS; Gurina VV; Nurminsky VN Planta; 2022 Feb; 255(3):65. PubMed ID: 35150330 [TBL] [Abstract][Full Text] [Related]
3. Variations in the content of tonoplast lipids under abiotic stress. Ozolina NV; Gurina VV; Nesterkina IS; Nurminsky VN Planta; 2020 May; 251(6):107. PubMed ID: 32440739 [TBL] [Abstract][Full Text] [Related]
4. Role of Plasmalemma Microdomains (Rafts) in Protection of the Plant Cell Under Osmotic Stress. Ozolina NV; Kapustina IS; Gurina VV; Bobkova VA; Nurminsky VN J Membr Biol; 2021 Aug; 254(4):429-439. PubMed ID: 34302495 [TBL] [Abstract][Full Text] [Related]
5. The microdomains (rafts) of plasmalemma in the protection of the plant cell under oxidative stress. Ozolina N; Kapustina I; Gurina V; Spiridonova E; Nurminsky V Protoplasma; 2023 Sep; 260(5):1365-1374. PubMed ID: 36959427 [TBL] [Abstract][Full Text] [Related]
10. Lipid membrane domains in cell surface and vacuolar systems. Kobayashi T; Hirabayashi Y Glycoconj J; 2000; 17(3 -4):163-71. PubMed ID: 11201787 [TBL] [Abstract][Full Text] [Related]
11. Energization of vacuolar transport in plant cells and its significance under stress. Seidel T; Siek M; Marg B; Dietz KJ Int Rev Cell Mol Biol; 2013; 304():57-131. PubMed ID: 23809435 [TBL] [Abstract][Full Text] [Related]
12. The effects of high concentrations of sodium or calcium ions on the lipid composition and properties of Tetrahymena membranes. Mattox SM; Thompson GA Biochim Biophys Acta; 1980 Jun; 599(1):24-31. PubMed ID: 6772220 [TBL] [Abstract][Full Text] [Related]
16. Recent updates on the physiology and evolution of plant TPK/KCO channels. Dabravolski SA; Isayenkov SV Funct Plant Biol; 2023 Jan; 50(1):17-28. PubMed ID: 36220140 [TBL] [Abstract][Full Text] [Related]
17. [Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations]. Rybchenko ZhI; Palladina TO Ukr Biokhim Zh (1999); 2011; 83(6):63-8. PubMed ID: 22364020 [TBL] [Abstract][Full Text] [Related]
18. Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. Andersson MX; Larsson KE; Tjellström H; Liljenberg C; Sandelius AS J Biol Chem; 2005 Jul; 280(30):27578-86. PubMed ID: 15927962 [TBL] [Abstract][Full Text] [Related]
19. Plant Vacuoles. Shimada T; Takagi J; Ichino T; Shirakawa M; Hara-Nishimura I Annu Rev Plant Biol; 2018 Apr; 69():123-145. PubMed ID: 29561663 [TBL] [Abstract][Full Text] [Related]
20. The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane. Patton JL; Lester RL J Bacteriol; 1991 May; 173(10):3101-8. PubMed ID: 1827112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]