BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 37410494)

  • 21. Diverse Deep Neural Networks All Predict Human Inferior Temporal Cortex Well, After Training and Fitting.
    Storrs KR; Kietzmann TC; Walther A; Mehrer J; Kriegeskorte N
    J Cogn Neurosci; 2021 Sep; 33(10):2044-2064. PubMed ID: 34272948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.
    Dong Q; Wang H; Hu Z
    Neural Comput; 2018 Feb; 30(2):447-476. PubMed ID: 29162010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Data Efficiency of Deep Learning Is Degraded by Unnecessary Input Dimensions.
    D'Amario V; Srivastava S; Sasaki T; Boix X
    Front Comput Neurosci; 2022; 16():760085. PubMed ID: 35173595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Neural Networks as a Computational Model for Human Shape Sensitivity.
    Kubilius J; Bracci S; Op de Beeck HP
    PLoS Comput Biol; 2016 Apr; 12(4):e1004896. PubMed ID: 27124699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing adversarial defense for medical image analysis systems with pruning and attention mechanism.
    Chen L; Zhao L; Chen CY
    Med Phys; 2021 Oct; 48(10):6198-6212. PubMed ID: 34487364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of deep neural network features by decodability from human brain activity.
    Horikawa T; Aoki SC; Tsukamoto M; Kamitani Y
    Sci Data; 2019 Feb; 6():190012. PubMed ID: 30747910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain hierarchy score: Which deep neural networks are hierarchically brain-like?
    Nonaka S; Majima K; Aoki SC; Kamitani Y
    iScience; 2021 Sep; 24(9):103013. PubMed ID: 34522856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Divergences in color perception between deep neural networks and humans.
    Nadler EO; Darragh-Ford E; Desikan BS; Conaway C; Chu M; Hull T; Guilbeault D
    Cognition; 2023 Dec; 241():105621. PubMed ID: 37716312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing.
    Jang H; Tong F
    J Vis; 2021 Nov; 21(12):6. PubMed ID: 34767621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adversarial Margin Maximization Networks.
    Yan Z; Guo Y; Zhang C
    IEEE Trans Pattern Anal Mach Intell; 2021 Apr; 43(4):1129-1139. PubMed ID: 31634825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal deep neural decoding reveals highly resolved spatiotemporal profile of visual object representation in humans.
    Watanabe N; Miyoshi K; Jimura K; Shimane D; Keerativittayayut R; Nakahara K; Takeda M
    Neuroimage; 2023 Jul; 275():120164. PubMed ID: 37169115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency-Tuned Universal Adversarial Attacks on Texture Recognition.
    Deng Y; Karam LJ
    IEEE Trans Image Process; 2022; 31():5856-5868. PubMed ID: 36054395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A regularization method to improve adversarial robustness of neural networks for ECG signal classification.
    Ma L; Liang L
    Comput Biol Med; 2022 May; 144():105345. PubMed ID: 35240379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
    Barrett DG; Morcos AS; Macke JH
    Curr Opin Neurobiol; 2019 Apr; 55():55-64. PubMed ID: 30785004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lightweight Pixel Difference Networks for Efficient Visual Representation Learning.
    Su Z; Zhang J; Wang L; Zhang H; Liu Z; Pietikainen M; Liu L
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14956-14974. PubMed ID: 37527290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spherical DNNs and Their Applications in 360
    Xu Y; Zhang Z; Gao S
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7235-7252. PubMed ID: 34314354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stacking-Based Deep Neural Network: Deep Analytic Network for Pattern Classification.
    Low CY; Park J; Teoh AB
    IEEE Trans Cybern; 2020 Dec; 50(12):5021-5034. PubMed ID: 31021783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Causal importance of low-level feature selectivity for generalization in image recognition.
    Ukita J
    Neural Netw; 2020 May; 125():185-193. PubMed ID: 32145648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing Robustness of Medical Image Segmentation Model with Neural Memory Ordinary Differential Equation.
    Hu J; Yu C; Yi Z; Zhang H
    Int J Neural Syst; 2023 Dec; 33(12):2350060. PubMed ID: 37743765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.