These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 37411019)

  • 1. Controlling Atomic-Scale Restructuring and Cleaning of Gold Nanogap Multilayers for Surface-Enhanced Raman Scattering Sensing.
    Grys DB; Niihori M; Arul R; Sibug-Torres SM; Wyatt EW; de Nijs B; Baumberg JJ
    ACS Sens; 2023 Jul; 8(7):2879-2888. PubMed ID: 37411019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
    Yokota Y; Ueno K; Misawa H
    Chem Commun (Camb); 2011 Mar; 47(12):3505-7. PubMed ID: 21318204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps.
    Bock S; Choi YS; Kim M; Yun Y; Pham XH; Kim J; Seong B; Kim W; Jo A; Ham KM; Lee SG; Lee SH; Kang H; Choi HS; Jeong DH; Chang H; Kim DE; Jun BH
    J Nanobiotechnology; 2022 Mar; 20(1):130. PubMed ID: 35279134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects.
    Wang MH; Hu JW; Li YJ; Yeung ES
    Nanotechnology; 2010 Apr; 21(14):145608. PubMed ID: 20234084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.
    Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D
    Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap.
    Lim DK; Jeon KS; Hwang JH; Kim H; Kwon S; Suh YD; Nam JM
    Nat Nanotechnol; 2011 May; 6(7):452-60. PubMed ID: 21623360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SERS Sensing of Dopamine with Fe(III)-Sensitized Nanogaps in Recleanable AuNP Monolayer Films.
    Niihori M; Földes T; Readman CA; Arul R; Grys DB; Nijs B; Rosta E; Baumberg JJ
    Small; 2023 Nov; 19(48):e2302531. PubMed ID: 37605460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.
    Zhang K; Ji J; Li Y; Liu B
    Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra-nanoparticle plasmonic nanogap based spatial-confinement SERS analysis of polypeptides.
    Li R; Hu Y; Sun X; Zhang Z; Chen K; Liu Q; Chen X
    Talanta; 2024 Jun; 273():125899. PubMed ID: 38484502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman scattering characterization of 1,4-phenylenediisocyanide in Au-Au and Ag-Au nanogaps.
    Kim K; Choi JY; Shin KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():3-9. PubMed ID: 22326719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanogap-tailored Au nanoparticles fabricated by pulsed laser ablation for surface-enhanced Raman scattering.
    Lee SJ; Lee H; Begildayeva T; Yu Y; Theerthagiri J; Kim Y; Lee YW; Han SW; Choi MY
    Biosens Bioelectron; 2022 Feb; 197():113766. PubMed ID: 34753095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering.
    Le-The H; Lozeman JJA; Lafuente M; Muñoz P; Bomer JG; Duy-Tong H; Berenschot E; van den Berg A; Tas NR; Odijk M; Eijkel JCT
    Nanoscale; 2019 Jul; 11(25):12152-12160. PubMed ID: 31194202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.
    Thacker VV; Herrmann LO; Sigle DO; Zhang T; Liedl T; Baumberg JJ; Keyser UF
    Nat Commun; 2014 Mar; 5():3448. PubMed ID: 24622339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERS-Active-Charged Microgels for Size- and Charge-Selective Molecular Analysis of Complex Biological Samples.
    Kim DJ; Park SG; Kim DH; Kim SH
    Small; 2018 Oct; 14(40):e1802520. PubMed ID: 30129114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Nanogap Platform for Sub-Volt Dielectrophoretic Trapping and Real-Time Raman Imaging of Biological Nanoparticles.
    Ertsgaard CT; Wittenberg NJ; Klemme DJ; Barik A; Shih WC; Oh SH
    Nano Lett; 2018 Sep; 18(9):5946-5953. PubMed ID: 30071732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.