BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37413752)

  • 1. Mechanistic insights into Sb(III) and Fe(II) co-oxidation by oxygen and hydrogen peroxide: Dominant reactive oxygen species and roles of organic ligands.
    Wang Y; Kong L; He M; Lin C; Ouyang W; Liu X; Peng X
    Water Res; 2023 Aug; 242():120296. PubMed ID: 37413752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Insights into Sb(III) Oxidation and Immobilization during Ferrous Iron Oxygenation: The Overlooked Roles of Singlet Oxygen and Fe (oxyhydr)oxides Formation.
    Wang Y; He M; Lin C; Ouyang W; Liu X
    Environ Sci Technol; 2024 Jun; ():. PubMed ID: 38864425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Fe(II)-induced generation of reactive oxygen species on magnetite surface for aqueous As(III) oxidation during oxygen activation.
    Meng F; Tong H; Feng C; Huang Z; Wu P; Zhou J; Hua J; Wu F; Liu C
    Water Res; 2024 Mar; 252():121232. PubMed ID: 38309068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of Sb(III) Photooxidation by the Excitation of Organic Fe(III) Complexes.
    Kong L; He M
    Environ Sci Technol; 2016 Jul; 50(13):6974-82. PubMed ID: 27267512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-oxidation of As(III) and Fe(II) by oxygen through complexation between As(III) and Fe(II)/Fe(III) species.
    Ding W; Xu J; Chen T; Liu C; Li J; Wu F
    Water Res; 2018 Oct; 143():599-607. PubMed ID: 30025352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chelators on the production and nature of the reactive intermediates formed in Fe(II) activated peroxydisulfate and hydrogen peroxide processes.
    Wang Z; Qiu W; Pang S; Jiang J
    Water Res; 2019 Nov; 164():114957. PubMed ID: 31421513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Groundwater-native Fe(II) oxidation prior to aeration with H
    Roy M; van Genuchten CM; Rietveld L; van Halem D
    Water Res; 2022 Sep; 223():119007. PubMed ID: 36044797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines.
    Sun Y; Pham AN; Waite TD
    J Neurochem; 2016 Jun; 137(6):955-68. PubMed ID: 26991725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide.
    Kong L; Hu X; He M
    Environ Sci Technol; 2015 Mar; 49(6):3499-505. PubMed ID: 25714842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady release-activation of hydrogen peroxide and molecular oxygen towards the removal of ciprofloxacin in the FeOCl/CaO
    Wang L; Yang H; Yao J; Wu Q; He Z; Yang Y
    Chemosphere; 2022 Dec; 308(Pt 1):136156. PubMed ID: 36029866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overcoming Acidic H
    Zhang T; Wen Y; Pan Z; Kuwahara Y; Mori K; Yamashita H; Zhao Y; Qian X
    Environ Sci Technol; 2022 Feb; 56(4):2617-2625. PubMed ID: 35098712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferryl Ion in the Photo-Fenton Process at Acidic pH: Occurrence, Fate, and Implications.
    Deng G; Wang Z; Ma J; Jiang J; He D; Li X; Szczuka A; Zhang Z
    Environ Sci Technol; 2023 Nov; 57(47):18586-18596. PubMed ID: 36912755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Fe(III) source, light quality, photon flux and presence of oxygen on photoreduction of Fe(III)-organic complexes - Implications for light-influenced coastal freshwater and marine sediments.
    Lueder U; Jørgensen BB; Maisch M; Schmidt C; Kappler A
    Sci Total Environ; 2022 Mar; 814():152767. PubMed ID: 34982989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation.
    Oszajca M; Drzewiecka-Matuszek A; Franke A; Rutkowska-Zbik D; Brindell M; Witko M; Stochel G; van Eldik R
    Chemistry; 2014 Feb; 20(8):2328-43. PubMed ID: 24443188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced generation of reactive oxygen species by pyrite for As(III) oxidation and immobilization: The vital role of Fe(II).
    Wu X; Yang J; Liu S; He Z; Wang Y; Qin W; Si Y
    Chemosphere; 2022 Dec; 309(Pt 2):136793. PubMed ID: 36220433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation.
    Leuz AK; Hug SJ; Wehrli B; Johnson CA
    Environ Sci Technol; 2006 Apr; 40(8):2565-71. PubMed ID: 16683593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disrupting ROS-protection mechanism allows hydrogen peroxide to accumulate and oxidize Sb(III) to Sb(V) in Pseudomonas stutzeri TS44.
    Wang D; Zhu F; Wang Q; Rensing C; Yu P; Gong J; Wang G
    BMC Microbiol; 2016 Nov; 16(1):279. PubMed ID: 27884113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.