These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37413895)

  • 1. Developing failure criteria for laceration injury of dermal tissue.
    Lovald ST; Gorji MB; Chen M; Pak N
    J Mech Behav Biomed Mater; 2023 Aug; 144():105986. PubMed ID: 37413895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of meniscal tears using continuum damage mechanics and digital image correlation.
    Nesbitt DQ; Burruel DE; Henderson BS; Lujan TJ
    Sci Rep; 2023 Mar; 13(1):4039. PubMed ID: 36899069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Does Chondrolabral Damage and Labral Repair Influence the Mechanics of the Hip in the Setting of Cam Morphology? A Finite-Element Modeling Study.
    Todd JN; Maak TG; Anderson AE; Ateshian GA; Weiss JA
    Clin Orthop Relat Res; 2022 Mar; 480(3):602-615. PubMed ID: 34766936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element simulation of Reference Point Indentation on bone.
    Idkaidek A; Agarwal V; Jasiuk I
    J Mech Behav Biomed Mater; 2017 Jan; 65():574-583. PubMed ID: 27721174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling lung tissue dynamics and injury under pressure and impact loading.
    Clayton JD
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2603-2626. PubMed ID: 32594333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin.
    Leyva-Mendivil MF; Page A; Bressloff NW; Limbert G
    J Mech Behav Biomed Mater; 2015 Sep; 49():197-219. PubMed ID: 26042766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hyperelastic and failure behaviors of skin in relation to the dynamic application of microscopic penetrators in a murine model.
    Meliga SC; Coffey JW; Crichton ML; Flaim C; Veidt M; Kendall MAF
    Acta Biomater; 2017 Jan; 48():341-356. PubMed ID: 27746361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics.
    Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of extracting tissue material properties via cohesive elements: a finite element approach to probe insertion procedures in non-invasive spine surgeries.
    Bojairami IE; Hamedzadeh A; Driscoll M
    Med Biol Eng Comput; 2021 Oct; 59(10):2051-2061. PubMed ID: 34431026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear elastic material property estimation of lower extremity residual limb tissues.
    Tönük E; Silver-Thorn MB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):43-53. PubMed ID: 12797725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of stress and strain calculations to passive material parameters in cardiac mechanical models using unloaded geometries.
    Kallhovd S; Sundnes J; Wall ST
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):664-675. PubMed ID: 30822148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational model coupling mechanics and electrophysiology in spinal cord injury.
    Jérusalem A; García-Grajales JA; Merchán-Pérez A; Peña JM
    Biomech Model Mechanobiol; 2014 Aug; 13(4):883-96. PubMed ID: 24337934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanical modelling of non-ballistic skin wounding: blunt-force injury.
    Whittle K; Kieser J; Ichim I; Swain M; Waddell N; Livingstone V; Taylor M
    Forensic Sci Med Pathol; 2008; 4(1):33-9. PubMed ID: 19291467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis and experimental evaluation of penetrating injury through the cornea.
    Lovald ST; Rau A; Nissman S; Ames N; McNulty J; Ochoa JA; Baldwinson M
    J Mech Behav Biomed Mater; 2017 Feb; 66():104-110. PubMed ID: 27863285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.