BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37414111)

  • 1. Natural spider silk nanofibrils produced by assembling molecules or disassembling fibers.
    Perera D; Li L; Walsh C; Silliman J; Xiong Y; Wang Q; Schniepp HC
    Acta Biomater; 2023 Sep; 168():323-332. PubMed ID: 37414111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.
    Agnarsson I; Kuntner M; Blackledge TA
    PLoS One; 2010 Sep; 5(9):e11234. PubMed ID: 20856804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of kinetics reveals the role of secondary nucleation in recombinant spider silk self-assembly.
    Hovanová V; Hovan A; Žoldák G; Sedlák E; Humenik M
    Protein Sci; 2023 Aug; 32(8):e4722. PubMed ID: 37417849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strength of Recluse Spider's Silk Originates from Nanofibrils.
    Wang Q; Schniepp HC
    ACS Macro Lett; 2018 Nov; 7(11):1364-1370. PubMed ID: 35651244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The elaborate structure of spider silk: structure and function of a natural high performance fiber.
    Römer L; Scheibel T
    Prion; 2008; 2(4):154-61. PubMed ID: 19221522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-strength and ultra-tough supramolecular polyamide spider silk fibers assembled via specific covalent and reversible hydrogen bonds.
    Mi J; Li X; Niu S; Zhou X; Lu Y; Yang Y; Sun Y; Meng Q
    Acta Biomater; 2024 Mar; 176():190-200. PubMed ID: 38199426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications.
    Humenik M; Pawar K; Scheibel T
    Adv Exp Med Biol; 2019; 1174():187-221. PubMed ID: 31713200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spider Silk Protein Forms Amyloid-Like Nanofibrils through a Non-Nucleation-Dependent Polymerization Mechanism.
    Qi X; Wang Y; Yu H; Liu R; Leppert A; Zheng Z; Zhong X; Jin Z; Wang H; Li X; Wang X; Landreh M; A Morozova-Roche L; Johansson J; Xiong S; Iashchishyn I; Chen G
    Small; 2023 Nov; 19(46):e2304031. PubMed ID: 37455347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks.
    Parent LR; Onofrei D; Xu D; Stengel D; Roehling JD; Addison JB; Forman C; Amin SA; Cherry BR; Yarger JL; Gianneschi NC; Holland GP
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11507-11512. PubMed ID: 30348773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spider silk aging: initial improvement in a high performance material followed by slow degradation.
    Agnarsson I; Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):494-504. PubMed ID: 18626974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles.
    He W; Wang M; Mei G; Liu S; Khan AQ; Li C; Feng D; Su Z; Bao L; Wang G; Liu E; Zhu Y; Bai J; Zhu M; Zhou X; Liu Z
    Nat Commun; 2024 Apr; 15(1):3485. PubMed ID: 38664427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General Methods to Produce and Assemble Recombinant Spider Silk Proteins.
    Kong N
    Methods Mol Biol; 2021; 2347():57-67. PubMed ID: 34472055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.
    Humenik M; Mohrand M; Scheibel T
    Bioconjug Chem; 2018 Apr; 29(4):898-904. PubMed ID: 29338201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of spidroin proteins in the silk glands of golden orb-weaver spiders.
    Jorge I; Ruiz V; Lavado-García J; Vázquez J; Hayashi C; Rojo FJ; Atienza JM; Elices M; Guinea GV; Pérez-Rigueiro J
    J Exp Zool B Mol Dev Evol; 2022 Jun; 338(4):241-253. PubMed ID: 34981640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.
    Adrianos SL; Teulé F; Hinman MB; Jones JA; Weber WS; Yarger JL; Lewis RV
    Biomacromolecules; 2013 Jun; 14(6):1751-60. PubMed ID: 23646825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large scale production of synthetic spider silk proteins in Escherichia coli.
    Bhattacharyya G; Oliveira P; Krishnaji ST; Chen D; Hinman M; Bell B; Harris TI; Ghazitabatabaei A; Lewis RV; Jones JA
    Protein Expr Purif; 2021 Jul; 183():105839. PubMed ID: 33746079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The properties of native Trichonephila dragline silk and its biomedical applications.
    Bergmann F; Stadlmayr S; Millesi F; Zeitlinger M; Naghilou A; Radtke C
    Biomater Adv; 2022 Sep; 140():213089. PubMed ID: 36037764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Point Nanoindentation Method to Determine Mechanical Anisotropy in Nanofibrillar Thin Films.
    Perera D; Wang Q; Schniepp HC
    Small; 2022 Jul; 18(30):e2202065. PubMed ID: 35780468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching.
    An B; Hinman MB; Holland GP; Yarger JL; Lewis RV
    Biomacromolecules; 2011 Jun; 12(6):2375-81. PubMed ID: 21574576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalization and Reinforcement of Recombinant Spider Dragline Silk Fibers by Confined Nanoparticle Formation.
    Cheng J; Hu CF; Gan CY; Xia XX; Qian ZG
    ACS Biomater Sci Eng; 2022 Aug; 8(8):3299-3309. PubMed ID: 35820196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.