BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3741433)

  • 21. Solubilization and identification of essential functional groups of Candida albicans oxidosqualene cyclase.
    Carrano L; Noe M; Grosa G; Milla P; Denaro M; Islam K
    J Med Vet Mycol; 1995; 33(1):53-8. PubMed ID: 7650579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 22,23-Epoxy-2-aza-2,3-dihydrosqualene derivatives: potent new inhibitors of squalene 2,3-oxide-lanosterol cyclase.
    Viola F; Ceruti M; Balliano G; Caputo O; Cattel L
    Farmaco; 1990 Sep; 45(9):965-78. PubMed ID: 2282128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification of 2,3-oxidosqualene cyclase from rat liver.
    Moore WR; Schatzman GL
    J Biol Chem; 1992 Nov; 267(31):22003-6. PubMed ID: 1429550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of S-adenosyl-L-methionine sterol-C-24-methyltransferase by analogues of a carbocationic ion high-energy intermediate. Structure activity relationships for C-25 heteroatoms (N, As, S) substituted triterpenoid derivatives.
    Rahier A; Génot JC; Schuber F; Benveniste P; Narula AS
    J Biol Chem; 1984 Dec; 259(24):15215-23. PubMed ID: 6511791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preferential cyclization of 2,3(S):22(S),23-dioxidosqualene by mammalian 2,3-oxidosqualene-lanosterol cyclase.
    Boutaud O; Dolis D; Schuber F
    Biochem Biophys Res Commun; 1992 Oct; 188(2):898-904. PubMed ID: 1445330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of fungal and mammalian sterol biosynthesis by 2-aza-2,3-dihydrosqualene.
    Ryder NS; Dupont MC; Frank I
    FEBS Lett; 1986 Aug; 204(2):239-42. PubMed ID: 3525224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of cholesterol biosynthesis in 3T3 fibroblasts by 2-aza-2,3-dihydrosqualene, a rationally designed 2,3-oxidosqualene cyclase inhibitor.
    Gerst N; Schuber F; Viola F; Cattel L
    Biochem Pharmacol; 1986 Dec; 35(23):4243-50. PubMed ID: 3790151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, synthesis and in vitro evaluation of pyridinium ion based cyclase inhibitors and antifungal agents.
    Rose IC; Sharpe BA; Lee RC; Griffin JH; Capobianco JO; Zakula D; Goldman RC
    Bioorg Med Chem; 1996 Jan; 4(1):97-103. PubMed ID: 8689245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential inhibition of fungal oxidosqualene cyclase by 6E and 6Z isomers of 2,3-epoxy-10-aza-10,11-dihydrosqualene.
    Balliano G; Milla P; Ceruti M; Viola F; Carrano L; Cattel L
    FEBS Lett; 1993 Apr; 320(3):203-6. PubMed ID: 8462686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of the gene encoding 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae.
    Shi Z; Buntel CJ; Griffin JH
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7370-4. PubMed ID: 8041797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis.
    Ohyama K; Suzuki M; Kikuchi J; Saito K; Muranaka T
    Proc Natl Acad Sci U S A; 2009 Jan; 106(3):725-30. PubMed ID: 19139393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and inhibition studies of sulfur-substituted squalene oxide analogues as mechanism-based inhibitors of 2,3-oxidosqualene-lanosterol cyclase.
    Stach D; Zheng YF; Perez AL; Oehlschlager AC; Abe I; Prestwich GD; Hartman PG
    J Med Chem; 1997 Jan; 40(2):201-9. PubMed ID: 9003518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partial purification of 2,3-oxidosqualene-lanosterol cyclase from hog-liver. Evidence for a functional thiol residue.
    Duriatti A; Schuber F
    Biochem Biophys Res Commun; 1988 Mar; 151(3):1378-85. PubMed ID: 3355560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drug design based on biosynthetic studies: synthesis, biological activity, and kinetics of new inhibitors of 2,3-oxidosqualene cyclase and squalene epoxidase.
    Cattel L; Ceruti M; Balliano G; Viola F; Grosa G; Schuber F
    Steroids; 1989; 53(3-5):363-91. PubMed ID: 2678608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lanosterol synthase in dicotyledonous plants.
    Suzuki M; Xiang T; Ohyama K; Seki H; Saito K; Muranaka T; Hayashi H; Katsube Y; Kushiro T; Shibuya M; Ebizuka Y
    Plant Cell Physiol; 2006 May; 47(5):565-71. PubMed ID: 16531458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of sterol biosynthesis in Saccharomyces cerevisiae by N,N-diethylazasqualene and derivatives.
    Balliano G; Viola F; Ceruti M; Cattel L
    Biochim Biophys Acta; 1988 Mar; 959(1):9-19. PubMed ID: 3278744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant sterol biosynthesis. Identification and characterization of two distinct microsomal oxidative enzymatic systems involved in sterol C4-demethylation.
    Pascal S; Taton M; Rahier A
    J Biol Chem; 1993 Jun; 268(16):11639-54. PubMed ID: 8505296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli-a method to biosynthesize plant-derived triterpene skeletons in E. coli.
    Takemura M; Tanaka R; Misawa N
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6615-6625. PubMed ID: 28710558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of a supernatant protein on microsomal squalene epoxidase and 2,3-oxidosqualene-lanosterol cyclase.
    Saat YA; Bloch KE
    J Biol Chem; 1976 Sep; 251(17):5155-60. PubMed ID: 956181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stereospecific syntheses of trans-vinyldioxidosqualene and 3-hydroxysulfide derivatives, as potent and time-dependent 2,3-oxidosqualene cyclase inhibitors.
    Viola F; Balliano G; Milla P; Cattel L; Rocco F; Ceruti M
    Bioorg Med Chem; 2000 Jan; 8(1):223-32. PubMed ID: 10968281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.