BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 3741443)

  • 1. Regulation of the tricarboxylic acid cycle and beta-oxidation by excess substrates.
    Dynnik VV; Djafarov RH
    Biochem Int; 1986 Jun; 12(6):795-805. PubMed ID: 3741443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Substrate inhibition in the tricarboxylic acid cycle].
    Dynnik VV; Maevskiĭ EI; Grigorenko EV; Kim IuV
    Biofizika; 1984; 29(6):954-8. PubMed ID: 6518172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A mathematical model of the pyruvate oxidation in liver mitochondria. 1. Regulation of the Krebs cycle by adenine and pyridine nucleotides].
    Dynnik VV; Temnov AV
    Biokhimiia; 1977 Jun; 42(6):1030-44. PubMed ID: 196685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatic organelle interaction. II. Effect of tricarboxylic acid cycle intermediates on N-demethylation and hydroxylation reactions in rat liver.
    Cinti DL; Ritchie A; Schenkman JB
    Mol Pharmacol; 1972 May; 8(3):339-44. PubMed ID: 4402750
    [No Abstract]   [Full Text] [Related]  

  • 5. [Thermodynamic parameters of free oxidation pathways in liver mitochondria].
    Samartsev VN; Polishchuk LS; Paĭdyganov AP
    Biofizika; 2003; 48(1):49-53. PubMed ID: 12630113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ratio between carbohydrate and lipid metabolism in muscle cell energy metabolism during ATPase loading. Mathematical model].
    Dynnik VV
    Biofizika; 1981; 26(4):712-8. PubMed ID: 6456774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes.
    Igoudjil A; Massart J; Begriche K; Descatoire V; Robin MA; Fromenty B
    Toxicol In Vitro; 2008 Jun; 22(4):887-98. PubMed ID: 18299183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Studies on the regulation of carbohydrate metabolism in vivo. 3. Influence of the inhibition of fatty acid oxidation].
    Nordmann R; Nordmann J
    Biochimie; 1971; 53(5):705-8. PubMed ID: 4330859
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria.
    KENNEDY EP; LEHNINGER AL
    J Biol Chem; 1949 Jun; 179(2):957-72. PubMed ID: 18150026
    [No Abstract]   [Full Text] [Related]  

  • 10. [Changes in neuronal structure and activity of various oxidation- reduction enzymes in the cerebellum after continuous long-term general low-frequency vibration].
    Il'in II; Nasibullin BA; Zherebitskiĭ VA
    Arkh Anat Gistol Embriol; 1991 Feb; 100(2):9-15. PubMed ID: 2053887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The measurement of mitochondrial beta-oxidation by release of 3H2O from [9,10-3H]hexadecanoate: application to skeletal muscle and the use of inhibitors as models of metabolic disease.
    Kler RS; Sherratt HS; Turnbull DM
    Biochem Med Metab Biol; 1992 Apr; 47(2):145-56. PubMed ID: 1515172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of carbostimulin on the concentration of tricarboxylic cycle metabolites, oxidative processes and antibody biosynthesis in the rat].
    Zhuravskiĭ NI; Bratus' NI; Kornilova ON; Lukinov DI; Solodova EV
    Ukr Biokhim Zh (1978); 1984; 56(1):88-91. PubMed ID: 6710619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Stability and distribution of stationary concentrations in the Krebs cycle].
    Shlygin VV
    Biokhimiia; 1988 Jun; 53(6):883-90. PubMed ID: 3179350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions affecting inhibition of tricarboxylic acid cycle by fluoroacetate in rat liver mitochondria.
    GAL EM; SMITH RE
    Proc Soc Exp Biol Med; 1960 Feb; 103():401-4. PubMed ID: 13825982
    [No Abstract]   [Full Text] [Related]  

  • 15. The tricarboxylic acid cycle in Dictyostelium discoideum. III. Analysis of steady state and dynamic behavior.
    Shiraishi F; Savageau MA
    J Biol Chem; 1992 Nov; 267(32):22926-33. PubMed ID: 1429643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry of the developing rat brain. II. Neonatal mitochondrial oxidations.
    MURTHY MR; RAPPOPORT DA
    Biochim Biophys Acta; 1963 Jul; 74():51-9. PubMed ID: 13936801
    [No Abstract]   [Full Text] [Related]  

  • 17. The tricarboxylic acid cycle in Dictyostelium discoideum. II. Evaluation of model consistency and robustness.
    Shiraishi F; Savageau MA
    J Biol Chem; 1992 Nov; 267(32):22919-25. PubMed ID: 1429642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terminal oxidation in the regulation of heme biosynthesis.
    ONISAWA J; LABBE RF
    Science; 1963 Jun; 140(3573):1326-7. PubMed ID: 13940139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oxidation of tricarboxylic acid cycle intermediates by a strain of Corynebacterium erythrogenes.
    TUCKER RG
    J Gen Microbiol; 1960 Oct; 23():267-82. PubMed ID: 13778543
    [No Abstract]   [Full Text] [Related]  

  • 20. Possible relations between the direct oxidation system of acetate and the tricarboxylic acid cycle in experiments with living yeast cells.
    BOLCATO V; SCEVOLA ME; TISSELLI MA
    Experientia; 1958 Jun; 14(6):212. PubMed ID: 13562060
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.