BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37414561)

  • 1. Three-Dimensional Ultrastructure of the Normal Rod Photoreceptor Synapse and Degenerative Changes Induced by Retinal Detachment.
    Torten G; Fisher SK; Linberg KA; Luna G; Perkins G; Ellisman MH; Williams DS
    J Neurosci; 2023 Jul; 43(30):5468-5482. PubMed ID: 37414561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retraction and remodeling of rod spherules are early events following experimental retinal detachment: an ultrastructural study using serial sections.
    Linberg KA; Lewis GP; Fisher SK
    Mol Vis; 2009; 15():10-25. PubMed ID: 19137070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
    Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA
    Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs.
    Li S; Mitchell J; Briggs DJ; Young JK; Long SS; Fuerst PG
    PLoS One; 2016; 11(3):e0150024. PubMed ID: 26930660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina.
    Linberg KA; Fisher SK
    J Comp Neurol; 1988 Feb; 268(2):281-97. PubMed ID: 3360989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two ribbon synaptic units in rod photoreceptors of macaque, human, and cat.
    Migdale K; Herr S; Klug K; Ahmad K; Linberg K; Sterling P; Schein S
    J Comp Neurol; 2003 Jan; 455(1):100-12. PubMed ID: 12454999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α
    Kerov V; Laird JG; Joiner ML; Knecht S; Soh D; Hagen J; Gardner SH; Gutierrez W; Yoshimatsu T; Bhattarai S; Puthussery T; Artemyev NO; Drack AV; Wong RO; Baker SA; Lee A
    J Neurosci; 2018 Jul; 38(27):6145-6160. PubMed ID: 29875267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Structural and Functional Integrity of Rod Photoreceptor Ribbon Synapses Depends on Redundant Actions of Dynamins 1 and 3.
    Hanke-Gogokhia C; Zapadka TE; Finkelstein S; Klingeborn M; Maugel TK; Singer JH; Arshavsky VY; Demb JB
    J Neurosci; 2024 Jun; 44(25):. PubMed ID: 38641407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunocytochemical evidence that rod-connected horizontal cell axon terminals remodel in response to experimental retinal detachment in the cat.
    Linberg KA; Lewis GP; Matsumoto B; Fisher SK
    Mol Vis; 2006 Dec; 12():1674-86. PubMed ID: 17213796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helical Fasciculation of Bipolar and Horizontal Cell Neurites for Wiring With Photoreceptors in Macaque and Mouse Retinas.
    Tsukamoto Y; Iseki K; Omi N
    Invest Ophthalmol Vis Sci; 2021 Jan; 62(1):31. PubMed ID: 33507230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prion-induced photoreceptor degeneration begins with misfolded prion protein accumulation in cones at two distinct sites: cilia and ribbon synapses.
    Striebel JF; Race B; Leung JM; Schwartz C; Chesebro B
    Acta Neuropathol Commun; 2021 Jan; 9(1):17. PubMed ID: 33509294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic growth in the rod terminals of mice after partial photoreceptor cell loss: a three-dimensional ultrastructural study.
    Jansen HG; Hawkins RK; Sanyal S
    Microsc Res Tech; 1997 Jan; 36(2):96-105. PubMed ID: 9015256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod bipolar cells and horizontal cells form displaced synaptic contacts with rods in the outer nuclear layer of the nob2 retina.
    Bayley PR; Morgans CW
    J Comp Neurol; 2007 Jan; 500(2):286-98. PubMed ID: 17111373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional remodeling in the retina of a mouse with a photoreceptor synaptopathy: plasticity in the rod and degeneration in the cone system.
    Specht D; Tom Dieck S; Ammermüller J; Regus-Leidig H; Gundelfinger ED; Brandstätter JH
    Eur J Neurosci; 2007 Nov; 26(9):2506-15. PubMed ID: 17970721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1.
    Ribic A; Liu X; Crair MC; Biederer T
    J Comp Neurol; 2014 Mar; 522(4):900-20. PubMed ID: 23982969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells.
    Kolb H
    Philos Trans R Soc Lond B Biol Sci; 1970 May; 258(823):261-83. PubMed ID: 22408829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synaptic ultrastructure in the outer plexiform layer of the catfish retina: a three-dimensional study with HVEM and conventional EM of Golgi-impregnated bipolar and horizontal cells.
    Hidaka S; Christensen BN; Naka K
    J Comp Neurol; 1986 May; 247(2):181-99. PubMed ID: 2424939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rod Bipolar Cells Require Horizontal Cells for Invagination Into the Terminals of Rod Photoreceptors.
    Nemitz L; Dedek K; Janssen-Bienhold U
    Front Cell Neurosci; 2019; 13():423. PubMed ID: 31619966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron microscope observations on synaptic vesicles in synapses of the retinal rods and cones.
    DE ROBERTIS E; FRANCHI CM
    J Biophys Biochem Cytol; 1956 May; 2(3):307-18. PubMed ID: 13331963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synaptic organization of the dopaminergic amacrine cell in the cat retina.
    Kolb H; Cuenca N; Wang HH; Dekorver L
    J Neurocytol; 1990 Jun; 19(3):343-66. PubMed ID: 2391538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.