BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37414747)

  • 1. Sumoylated SnoN interacts with HDAC1 and p300/CBP to regulate EMT-associated phenotypes in mammary organoids.
    Chanda A; Sarkar A; Deng L; Bonni A; Bonni S
    Cell Death Dis; 2023 Jul; 14(7):405. PubMed ID: 37414747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of TGFβ-induced epithelial-mesenchymal transition like phenotype by a PIAS1 regulated sumoylation pathway in NMuMG epithelial cells.
    Netherton SJ; Bonni S
    PLoS One; 2010 Nov; 5(11):e13971. PubMed ID: 21103059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TIF1γ protein regulates epithelial-mesenchymal transition by operating as a small ubiquitin-like modifier (SUMO) E3 ligase for the transcriptional regulator SnoN1.
    Ikeuchi Y; Dadakhujaev S; Chandhoke AS; Huynh MA; Oldenborg A; Ikeuchi M; Deng L; Bennett EJ; Harper JW; Bonni A; Bonni S
    J Biol Chem; 2014 Sep; 289(36):25067-78. PubMed ID: 25059663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ubiquitin ligase Smurf2 suppresses TGFβ-induced epithelial-mesenchymal transition in a sumoylation-regulated manner.
    Chandhoke AS; Karve K; Dadakhujaev S; Netherton S; Deng L; Bonni S
    Cell Death Differ; 2016 May; 23(5):876-88. PubMed ID: 26679521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The liver kinase B1 supports mammary epithelial morphogenesis by inhibiting critical factors that mediate epithelial-mesenchymal transition.
    Tzavlaki K; Ohata Y; Morén A; Watanabe Y; Eriksson J; Tsuchiya M; Kubo Y; Yamamoto K; Sellin ME; Kato M; Caja L; Heldin CH; Moustakas A
    J Cell Physiol; 2023 Apr; 238(4):790-812. PubMed ID: 36791282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression.
    Chanda A; Sarkar A; Bonni S
    Cancers (Basel); 2018 Aug; 10(8):. PubMed ID: 30096838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PIAS1 and TIF1γ collaborate to promote SnoN SUMOylation and suppression of epithelial-mesenchymal transition.
    Chanda A; Ikeuchi Y; Karve K; Sarkar A; Chandhoke AS; Deng L; Bonni A; Bonni S
    Cell Death Differ; 2021 Jan; 28(1):267-282. PubMed ID: 32770107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sumoylated SnoN represses transcription in a promoter-specific manner.
    Hsu YH; Sarker KP; Pot I; Chan A; Netherton SJ; Bonni S
    J Biol Chem; 2006 Nov; 281(44):33008-18. PubMed ID: 16966324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprogramming during epithelial to mesenchymal transition under the control of TGFβ.
    Tan EJ; Olsson AK; Moustakas A
    Cell Adh Migr; 2015; 9(3):233-46. PubMed ID: 25482613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the SUMO E3 ligase PIAS1 as a potential survival biomarker in breast cancer.
    Chanda A; Chan A; Deng L; Kornaga EN; Enwere EK; Morris DG; Bonni S
    PLoS One; 2017; 12(5):e0177639. PubMed ID: 28493978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancer Reprogramming within Pre-existing Topologically Associated Domains Promotes TGF-β-Induced EMT and Cancer Metastasis.
    Qiao Y; Wang Z; Tan F; Chen J; Lin J; Yang J; Li H; Wang X; Sali A; Zhang L; Zhong G
    Mol Ther; 2020 Sep; 28(9):2083-2095. PubMed ID: 32526202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) β: LncRNA-hit-mediated TGFβ-induced epithelial to mesenchymal transition in mammary epithelia.
    Richards EJ; Zhang G; Li ZP; Permuth-Wey J; Challa S; Li Y; Kong W; Dan S; Bui MM; Coppola D; Mao WM; Sellers TA; Cheng JQ
    J Biol Chem; 2015 Mar; 290(11):6857-67. PubMed ID: 25605728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mnt Represses Epithelial Identity To Promote Epithelial-to-Mesenchymal Transition.
    Lavin DP; Abassi L; Inayatullah M; Tiwari VK
    Mol Cell Biol; 2021 Oct; 41(11):e0018321. PubMed ID: 34460331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SnoN suppresses TGF-β-induced epithelial-mesenchymal transition and invasion of bladder cancer in a TIF1γ-dependent manner.
    Yin X; Xu C; Zheng X; Yuan H; Liu M; Qiu Y; Chen J
    Oncol Rep; 2016 Sep; 36(3):1535-41. PubMed ID: 27430247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPRR2A enhances p53 deacetylation through HDAC1 and down regulates p21 promoter activity.
    Mizuguchi Y; Specht S; Lunz JG; Isse K; Corbitt N; Takizawa T; Demetris AJ
    BMC Mol Biol; 2012 Jun; 13():20. PubMed ID: 22731250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of epithelial-mesenchymal transition and organoid morphogenesis by a novel TGFβ-TCF7L2 isoform-specific signaling pathway.
    Karve K; Netherton S; Deng L; Bonni A; Bonni S
    Cell Death Dis; 2020 Aug; 11(8):704. PubMed ID: 32843642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells.
    Palma Cde S; Grassi ML; Thomé CH; Ferreira GA; Albuquerque D; Pinto MT; Ferreira Melo FU; Kashima S; Covas DT; Pitteri SJ; Faça VM
    Mol Cell Proteomics; 2016 Mar; 15(3):906-17. PubMed ID: 26764010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids.
    Rafehi S; Ramos Valdes Y; Bertrand M; McGee J; Préfontaine M; Sugimoto A; DiMattia GE; Shepherd TG
    Endocr Relat Cancer; 2016 Mar; 23(3):147-59. PubMed ID: 26647384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PARP3 controls TGFβ and ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis.
    Karicheva O; Rodriguez-Vargas JM; Wadier N; Martin-Hernandez K; Vauchelles R; Magroun N; Tissier A; Schreiber V; Dantzer F
    Oncotarget; 2016 Sep; 7(39):64109-64123. PubMed ID: 27579892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Krüppel-like factor 5 through direct interaction.
    Matsumura T; Suzuki T; Aizawa K; Munemasa Y; Muto S; Horikoshi M; Nagai R
    J Biol Chem; 2005 Apr; 280(13):12123-9. PubMed ID: 15668237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.