BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37415009)

  • 1. The energy landscape for R-loop formation by the CRISPR-Cas Cascade complex.
    Kauert DJ; Madariaga-Marcos J; Rutkauskas M; Wulfken A; Songailiene I; Sinkunas T; Siksnys V; Seidel R
    Nat Struct Mol Biol; 2023 Jul; 30(7):1040-1047. PubMed ID: 37415009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling.
    Ivanov IE; Wright AV; Cofsky JC; Aris KDP; Doudna JA; Bryant Z
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5853-5860. PubMed ID: 32123105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.
    Hayes RP; Xiao Y; Ding F; van Erp PB; Rajashankar K; Bailey S; Wiedenheft B; Ke A
    Nature; 2016 Feb; 530(7591):499-503. PubMed ID: 26863189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Molecule Insight Into Target Recognition by CRISPR-Cas Complexes.
    Rutkauskas M; Krivoy A; Szczelkun MD; Rouillon C; Seidel R
    Methods Enzymol; 2017; 582():239-273. PubMed ID: 28062037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.
    Hochstrasser ML; Taylor DW; Bhat P; Guegler CK; Sternberg SH; Nogales E; Doudna JA
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6618-23. PubMed ID: 24748111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insights into the R-loop formation and cleavage in CRISPR-Cas12i1.
    Zhang B; Luo D; Li Y; Perčulija V; Chen J; Lin J; Ye Y; Ouyang S
    Nat Commun; 2021 Jun; 12(1):3476. PubMed ID: 34108490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal Structures of Csm2 and Csm3 in the Type III-A CRISPR-Cas Effector Complex.
    Takeshita D; Sato M; Inanaga H; Numata T
    J Mol Biol; 2019 Feb; 431(4):748-763. PubMed ID: 30639408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa.
    Rollins MF; Schuman JT; Paulus K; Bukhari HS; Wiedenheft B
    Nucleic Acids Res; 2015 Feb; 43(4):2216-22. PubMed ID: 25662606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes.
    Szczelkun MD; Tikhomirova MS; Sinkunas T; Gasiunas G; Karvelis T; Pschera P; Siksnys V; Seidel R
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9798-803. PubMed ID: 24912165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity.
    Jia N; Mo CY; Wang C; Eng ET; Marraffini LA; Patel DJ
    Mol Cell; 2019 Jan; 73(2):264-277.e5. PubMed ID: 30503773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System.
    Xiao Y; Luo M; Hayes RP; Kim J; Ng S; Ding F; Liao M; Ke A
    Cell; 2017 Jun; 170(1):48-60.e11. PubMed ID: 28666122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution and biochemical characterization of ribonucleoprotein complexes in Type I-E CRISPR-Cas systems.
    Xiao Y; Ke A
    Methods Enzymol; 2019; 616():27-41. PubMed ID: 30691647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA interference is controlled by R-loop length in a type I-F1 CRISPR-Cas system.
    Tuminauskaite D; Norkunaite D; Fiodorovaite M; Tumas S; Songailiene I; Tamulaitiene G; Sinkunas T
    BMC Biol; 2020 Jun; 18(1):65. PubMed ID: 32539804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1.
    Nickel L; Ulbricht A; Alkhnbashi OS; Förstner KU; Cassidy L; Weidenbach K; Backofen R; Schmitz RA
    RNA Biol; 2019 Apr; 16(4):492-503. PubMed ID: 30153081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli.
    Zhao H; Sheng G; Wang J; Wang M; Bunkoczi G; Gong W; Wei Z; Wang Y
    Nature; 2014 Nov; 515(7525):147-50. PubMed ID: 25118175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex.
    Majumdar S; Ligon M; Skinner WC; Terns RM; Terns MP
    Extremophiles; 2017 Jan; 21(1):95-107. PubMed ID: 27582008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation
    Cooper LA; Stringer AM; Wade JT
    mBio; 2018 Apr; 9(2):. PubMed ID: 29666291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
    Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and Stoichiometry of CRISPR-Cascade Complexes with Varying Spacer Lengths Revealed by Native Mass Spectrometry.
    Wittig S; Songailiene I; Schmidt C
    J Am Soc Mass Spectrom; 2020 Mar; 31(3):538-546. PubMed ID: 32008319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decision-Making in Cascade Complexes Harboring crRNAs of Altered Length.
    Songailiene I; Rutkauskas M; Sinkunas T; Manakova E; Wittig S; Schmidt C; Siksnys V; Seidel R
    Cell Rep; 2019 Sep; 28(12):3157-3166.e4. PubMed ID: 31533038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.