BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37415050)

  • 1. Optogenetically mediated large volume suppression and synchronized excitation of human ventricular cardiomyocytes.
    Pyari G; Bansal H; Roy S
    Pflugers Arch; 2023 Dec; 475(12):1479-1503. PubMed ID: 37415050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.
    Karathanos TV; Bayer JD; Wang D; Boyle PM; Trayanova NA
    J Physiol; 2016 Dec; 594(23):6879-6891. PubMed ID: 26941055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses.
    Bansal H; Gupta N; Roy S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315
    [No Abstract]   [Full Text] [Related]  

  • 5. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models.
    Boyle PM; Murphy MJ; Karathanos TV; Zahid S; Blake RC; Trayanova NA
    J Physiol; 2018 Jan; 596(2):181-196. PubMed ID: 29193078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Control of Human Induced Pluripotent Stem Cell-Derived Cardiac Tissue Models.
    Gruber A; Edri O; Glatstein S; Goldfracht I; Huber I; Arbel G; Gepstein A; Chorna S; Gepstein L
    J Am Heart Assoc; 2022 Feb; 11(4):e021615. PubMed ID: 35112880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study.
    Bansal H; Pyari G; Roy S
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320791
    [No Abstract]   [Full Text] [Related]  

  • 8. Optogenetic modulation of cardiac action potential properties may prevent arrhythmogenesis in short and long QT syndromes.
    Gruber A; Edri O; Huber I; Arbel G; Gepstein A; Shiti A; Shaheen N; Chorna S; Landesberg M; Gepstein L
    JCI Insight; 2021 Jun; 6(11):. PubMed ID: 34100384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating cardiac physiology in engineered heart tissue with the bidirectional optogenetic tool BiPOLES.
    Schwarzová B; Stüdemann T; Sönmez M; Rössinger J; Pan B; Eschenhagen T; Stenzig J; Wiegert JS; Christ T; Weinberger F
    Pflugers Arch; 2023 Dec; 475(12):1463-1477. PubMed ID: 37863976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic gene transfer enables optogenetic pacing of mouse hearts.
    Vogt CC; Bruegmann T; Malan D; Ottersbach A; Roell W; Fleischmann BK; Sasse P
    Cardiovasc Res; 2015 May; 106(2):338-43. PubMed ID: 25587047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic intermittent tachypacing by an optogenetic approach induces arrhythmia vulnerability in human engineered heart tissue.
    Lemme M; Braren I; Prondzynski M; Aksehirlioglu B; Ulmer BM; Schulze ML; Ismaili D; Meyer C; Hansen A; Christ T; Lemoine MD; Eschenhagen T
    Cardiovasc Res; 2020 Jul; 116(8):1487-1499. PubMed ID: 31598634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management.
    Nyns ECA; Kip A; Bart CI; Plomp JJ; Zeppenfeld K; Schalij MJ; de Vries AAF; Pijnappels DA
    Eur Heart J; 2017 Jul; 38(27):2132-2136. PubMed ID: 28011703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.
    Williams JC; Xu J; Lu Z; Klimas A; Chen X; Ambrosi CM; Cohen IS; Entcheva E
    PLoS Comput Biol; 2013; 9(9):e1003220. PubMed ID: 24068903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights.
    Williams JC; Entcheva E
    Biophys J; 2015 Apr; 108(8):1934-45. PubMed ID: 25902433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology.
    Fernández MC; Kopton RA; Simon-Chica A; Madl J; Hilgendorf I; Zgierski-Johnston CM; Schneider-Warme F
    Methods Mol Biol; 2021; 2191():287-307. PubMed ID: 32865751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac Electrophysiological Effects of Light-Activated Chloride Channels.
    Kopton RA; Baillie JS; Rafferty SA; Moss R; Zgierski-Johnston CM; Prykhozhij SV; Stoyek MR; Smith FM; Kohl P; Quinn TA; Schneider-Warme F
    Front Physiol; 2018; 9():1806. PubMed ID: 30618818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac optogenetics.
    Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1386-9. PubMed ID: 23366158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anion channelrhodopsins for inhibitory cardiac optogenetics.
    Govorunova EG; Cunha SR; Sineshchekov OA; Spudich JL
    Sci Rep; 2016 Sep; 6():33530. PubMed ID: 27628215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Modulation of Cardiac Sympathetic Nerve Activity to Prevent Ventricular Arrhythmias.
    Yu L; Zhou L; Cao G; Po SS; Huang B; Zhou X; Wang M; Yuan S; Wang Z; Wang S; Jiang H
    J Am Coll Cardiol; 2017 Dec; 70(22):2778-2790. PubMed ID: 29191327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac Optogenetics: Enhancement by All-trans-Retinal.
    Yu J; Chen K; Lucero RV; Ambrosi CM; Entcheva E
    Sci Rep; 2015 Nov; 5():16542. PubMed ID: 26568132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.