These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37415125)
41. Convolutional neural network applied to preoperative venous-phase CT images predicts risk category in patients with gastric gastrointestinal stromal tumors. Wang J; Shao M; Hu H; Xiao W; Cheng G; Yang G; Ji H; Yu S; Wan J; Xie Z; Xu M BMC Cancer; 2024 Mar; 24(1):280. PubMed ID: 38429653 [TBL] [Abstract][Full Text] [Related]
42. Radiomics Nomogram Based on Contrast-enhanced CT to Predict the Malignant Potential of Gastrointestinal Stromal Tumor: A Two-center Study. Song Y; Li J; Wang H; Liu B; Yuan C; Liu H; Zheng Z; Min F; Li Y Acad Radiol; 2022 Jun; 29(6):806-816. PubMed ID: 34238656 [TBL] [Abstract][Full Text] [Related]
43. Preoperative imaging of gastric GISTs underestimates pathologic tumor size: A retrospective, single institution analysis. Apte SS; Radonjic A; Wong B; Dingley B; Boulva K; Chatterjee A; Purgina B; Ramsay T; Nessim C J Surg Oncol; 2021 Jul; 124(1):49-58. PubMed ID: 33857332 [TBL] [Abstract][Full Text] [Related]
44. Predictive features of CT for risk stratifications in patients with primary gastrointestinal stromal tumour. Zhou C; Duan X; Zhang X; Hu H; Wang D; Shen J Eur Radiol; 2016 Sep; 26(9):3086-93. PubMed ID: 26699371 [TBL] [Abstract][Full Text] [Related]
45. Texture analysis of CT images in predicting malignancy risk of gastrointestinal stromal tumours. Liu S; Pan X; Liu R; Zheng H; Chen L; Guan W; Wang H; Sun Y; Tang L; Guan Y; Ge Y; He J; Zhou Z Clin Radiol; 2018 Mar; 73(3):266-274. PubMed ID: 28969853 [TBL] [Abstract][Full Text] [Related]
46. CT texture analysis can be a potential tool to differentiate gastrointestinal stromal tumors without KIT exon 11 mutation. Xu F; Ma X; Wang Y; Tian Y; Tang W; Wang M; Wei R; Zhao X Eur J Radiol; 2018 Oct; 107():90-97. PubMed ID: 30292279 [TBL] [Abstract][Full Text] [Related]
47. Comparison of Conventional Logistic Regression and Machine Learning Methods for Predicting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Multicentric Observational Cohort Study. Hu P; Li Y; Liu Y; Guo G; Gao X; Su Z; Wang L; Deng G; Yang S; Qi Y; Xu Y; Ye L; Sun Q; Nie X; Sun Y; Li M; Zhang H; Chen Q Front Aging Neurosci; 2022; 14():857521. PubMed ID: 35783143 [TBL] [Abstract][Full Text] [Related]
48. Radiomics nomogram for predicting the malignant potential of gastrointestinal stromal tumours preoperatively. Chen T; Ning Z; Xu L; Feng X; Han S; Roth HR; Xiong W; Zhao X; Hu Y; Liu H; Yu J; Zhang Y; Li Y; Xu Y; Mori K; Li G Eur Radiol; 2019 Mar; 29(3):1074-1082. PubMed ID: 30116959 [TBL] [Abstract][Full Text] [Related]
49. CT-based radiomics analysis in the prediction of response to neoadjuvant chemotherapy in locally advanced gastric cancer: A dual-center study. Song R; Cui Y; Ren J; Zhang J; Yang Z; Li D; Li Z; Yang X Radiother Oncol; 2022 Jun; 171():155-163. PubMed ID: 35490846 [TBL] [Abstract][Full Text] [Related]
50. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study. Jiang Y; Liang X; Han Z; Wang W; Xi S; Li T; Chen C; Yuan Q; Li N; Yu J; Xie Y; Xu Y; Zhou Z; Poultsides GA; Li G; Li R Lancet Digit Health; 2021 Jun; 3(6):e371-e382. PubMed ID: 34045003 [TBL] [Abstract][Full Text] [Related]
51. Value of contrast-enhanced CT based radiomic machine learning algorithm in differentiating gastrointestinal stromal tumors with KIT exon 11 mutation: a two-center study. Liu B; Liu H; Zhang L; Song Y; Yang S; Zheng Z; Zhao J; Hou F; Zhang J Diagn Interv Radiol; 2022 Jan; 28(1):29-38. PubMed ID: 35142612 [TBL] [Abstract][Full Text] [Related]
52. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
53. Preoperative CT-Based Deep Learning Model for Predicting Risk Stratification in Patients With Gastrointestinal Stromal Tumors. Kang B; Yuan X; Wang H; Qin S; Song X; Yu X; Zhang S; Sun C; Zhou Q; Wei Y; Shi F; Yang S; Wang X Front Oncol; 2021; 11():750875. PubMed ID: 34631589 [TBL] [Abstract][Full Text] [Related]
54. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
55. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study. Huang CB; Hu JS; Tan K; Zhang W; Xu TH; Yang L BMC Geriatr; 2022 Oct; 22(1):796. PubMed ID: 36229793 [TBL] [Abstract][Full Text] [Related]
56. Distinguishing common renal cell carcinomas from benign renal tumors based on machine learning: comparing various CT imaging phases, slices, tumor sizes, and ROI segmentation strategies. Zhou T; Guan J; Feng B; Xue H; Cui J; Kuang Q; Chen Y; Xu K; Lin F; Cui E; Long W Eur Radiol; 2023 Jun; 33(6):4323-4332. PubMed ID: 36645455 [TBL] [Abstract][Full Text] [Related]
57. Utility of preoperative computed tomography features in predicting the Ki-67 labeling index of gastric gastrointestinal stromal tumors. Chen XS; Shan YC; Dong SY; Wang WT; Yang YT; Liu LH; Xu ZH; Zeng MS; Rao SX Eur J Radiol; 2021 Sep; 142():109840. PubMed ID: 34237492 [TBL] [Abstract][Full Text] [Related]
58. Development and validation of an EUS-based nomogram for prediction of the malignant potential in gastrointestinal stromal tumors. Liu L; Chen J; Shan J; Sun X Scand J Gastroenterol; 2023 Jul; 58(7):830-837. PubMed ID: 36740838 [TBL] [Abstract][Full Text] [Related]
59. Establishment of a prognostic model for gastric cancer patients who underwent radical gastrectomy using machine learning: a two-center study. Lu T; Lu M; Liu H; Song D; Wang Z; Guo Y; Fang Y; Chen Q; Li T Front Oncol; 2023; 13():1282042. PubMed ID: 38665864 [TBL] [Abstract][Full Text] [Related]
60. How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach. Ichikawa D; Saito T; Ujita W; Oyama H J Biomed Inform; 2016 Dec; 64():20-24. PubMed ID: 27658886 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]