These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37415455)

  • 21. Catabolism of the Cholesterol Side Chain in Mycobacterium tuberculosis Is Controlled by a Redox-Sensitive Thiol Switch.
    Lu R; Schaefer CM; Nesbitt NM; Kuper J; Kisker C; Sampson NS
    ACS Infect Dis; 2017 Sep; 3(9):666-675. PubMed ID: 28786661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome.
    Yang Z; Zeng X; Tsui SK
    BMC Genomics; 2019 May; 20(1):394. PubMed ID: 31113361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insight from the structural molecular model of cytidylate kinase from Mycobacterium tuberculosis.
    Verma NK; Singh B
    Bioinformation; 2013; 9(13):680-4. PubMed ID: 23930019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Recent progress in mycobacteriology].
    Okada M; Kobayashi K
    Kekkaku; 2007 Oct; 82(10):783-99. PubMed ID: 18018602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi Epitope-Based Vaccine Design for Protection Against
    Pitaloka DAE; Izzati A; Amirah SR; Syakuran LA
    Adv Appl Bioinform Chem; 2022; 15():43-57. PubMed ID: 35941993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Mining and Characterization of Hypothetical Proteins of Mycobacterium bovis Toward the Identification of Probable Vaccine Candidates.
    Ganguly B
    Methods Mol Biol; 2022; 2412():449-455. PubMed ID: 34918261
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Jia Q; Masleša-Galić S; Nava S; Horwitz MA
    mBio; 2022 Jun; 13(3):e0068722. PubMed ID: 35642945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Domain-wise differentiation of Mycobacterium tuberculosis H
    Beg MA; Hejazi II; Thakur SC; Athar F
    Biotechnol Appl Biochem; 2022 Feb; 69(1):296-312. PubMed ID: 33469971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach.
    Uddin R; Siddiqui QN; Azam SS; Saima B; Wadood A
    Eur J Pharm Sci; 2018 Mar; 114():13-23. PubMed ID: 29174549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ferritin structure from Mycobacterium tuberculosis: comparative study with homologues identifies extended C-terminus involved in ferroxidase activity.
    Khare G; Gupta V; Nangpal P; Gupta RK; Sauter NK; Tyagi AK
    PLoS One; 2011 Apr; 6(4):e18570. PubMed ID: 21494619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis.
    Chim N; Riley R; The J; Im S; Segelke B; Lekin T; Yu M; Hung LW; Terwilliger T; Whitelegge JP; Goulding CW
    J Mol Biol; 2010 Mar; 396(5):1211-26. PubMed ID: 20060836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the interaction between Mycobacterium tuberculosis enolase and human plasminogen using computational methods and experimental techniques.
    Rahi A; Dhiman A; Singh D; Lynn AM; Rehan M; Bhatnagar R
    J Cell Biochem; 2018 Feb; 119(2):2408-2417. PubMed ID: 28888036
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Clemmensen HS; Dube JY; McIntosh F; Rosenkrands I; Jungersen G; Aagaard C; Andersen P; Behr MA; Mortensen R
    mBio; 2021 Apr; 12(2):. PubMed ID: 33879592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic-and-Epigenetic Interspecies Networks for Cross-Talk Mechanisms in Human Macrophages and Dendritic Cells during MTB Infection.
    Li CW; Lee YL; Chen BS
    Front Cell Infect Microbiol; 2016; 6():124. PubMed ID: 27803888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [A multi-stage and multi-epitope vaccine against Mycobacterium tuberculosis based on an immunoinformatics approach].
    Ning Y; Cai Y; Liu X; Gu C; Meng X; Qiao J
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2023 Jun; 39(6):494-500. PubMed ID: 37340917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunoinformatic-Based Multi-Epitope Vaccine Design for Co-Infection of
    Peng C; Tang F; Wang J; Cheng P; Wang L; Gong W
    J Pers Med; 2023 Jan; 13(1):. PubMed ID: 36675777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the contribution of MTP and the predicted Flp pilus genes to Mycobacterium tuberculosis pathogenesis.
    Mann KM; Pride AC; Flentie K; Kimmey JM; Weiss LA; Stallings CL
    Microbiology (Reading); 2016 Oct; 162(10):1784-1796. PubMed ID: 27586540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis.
    Tzelepis F; Blagih J; Khan N; Gillard J; Mendonca L; Roy DG; Ma EH; Joubert P; Jones RG; Divangahi M
    Sci Immunol; 2018 May; 3(23):. PubMed ID: 29752301
    [No Abstract]   [Full Text] [Related]  

  • 40. Comparison of antibody responses against Mycobacterium tuberculosis antigen Rv0679c in tuberculosis patients from the endemic and non-endemic regions of the Beijing genotype: a case control study.
    Zhao J; Matsuba T; Zhang X; Leano S; Nakajima C; Chagan-Yasutan H; Telan EF; Suzuki Y; Hattori T
    BMC Infect Dis; 2017 May; 17(1):344. PubMed ID: 28506215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.