These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37417321)

  • 1. Perovskite Solar Cell Using Isonicotinic Acid as a Gap-Filling Self-Assembled Monolayer with High Photovoltaic Performance and Light Stability.
    Sekimoto T; Yamamoto T; Takeno F; Nishikubo R; Hiraoka M; Uchida R; Nakamura T; Kawano K; Saeki A; Kaneko Y; Matsui T
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):33581-33592. PubMed ID: 37417321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer.
    Hou M; Zhang H; Wang Z; Xia Y; Chen Y; Huang W
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30607-30613. PubMed ID: 30118201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability.
    Dai Z; Yadavalli SK; Chen M; Abbaspourtamijani A; Qi Y; Padture NP
    Science; 2021 May; 372(6542):618-622. PubMed ID: 33958474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers.
    Abrusci A; Stranks SD; Docampo P; Yip HL; Jen AK; Snaith HJ
    Nano Lett; 2013 Jul; 13(7):3124-8. PubMed ID: 23772773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Temperature Solution-Processed ZnSe Electron Transport Layer for Efficient Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Photostability.
    Li X; Yang J; Jiang Q; Lai H; Li S; Xin J; Chu W; Hou J
    ACS Nano; 2018 Jun; 12(6):5605-5614. PubMed ID: 29741863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-cation hybrid stannic oxide electron transport layer for high-efficiency perovskite solar cells.
    Zong B; Sun Q; Deng J; Meng X; Zhang Z; Kang B; Ravi P Silva S; Lu G
    J Colloid Interface Sci; 2022 May; 614():415-424. PubMed ID: 35108633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Perovskite Solar Cells by TiO
    Yadeta TF; Huang KW; Imae T; Tung YL
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile NaF Treatment Achieves 20% Efficient ETL-Free Perovskite Solar Cells.
    Sadegh F; Akman E; Prochowicz D; Tavakoli MM; Yadav P; Akin S
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38631-38641. PubMed ID: 35979724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Area-Scalable Zn
    Liu X; Zhang Y; Chen M; Xiao C; Brooks KG; Xia J; Gao XX; Kanda H; Kinge S; Asiri AM; Luther JM; Feng Y; Dyson PJ; Nazeeruddin MK
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35535996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Enhancement of Efficiency and Operational-Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening.
    Yang IS; Dai Z; Ranka A; Chen D; Zhu K; Berry JJ; Guo P; Padture NP
    Adv Mater; 2024 Jan; 36(3):e2308819. PubMed ID: 37832157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO
    Mali SS; Hong CK; Inamdar AI; Im H; Shim SE
    Nanoscale; 2017 Mar; 9(9):3095-3104. PubMed ID: 28195297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of a SnO
    Zhang H; Liang C; Sun F; Cai Y; Song Q; Gong H; Li D; You F; He Z
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54579-54588. PubMed ID: 34730948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the stability and efficiency of carbon-based perovskite solar cell performance with ZrO
    Kumar A; Sayyed MI; Taki AG; Valverde V; Hernández E
    Nanoscale Adv; 2024 Jan; 6(2):548-558. PubMed ID: 38235071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Planar Perovskite Solar Cells with a Reduced Energy Barrier and Enhanced Charge Extraction via a Na
    Xiao B; Li X; Yi Z; Luo Y; Jiang Q; Yang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7962-7971. PubMed ID: 35119820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Temperature Synthesized Nb-Doped TiO
    Sanehira Y; Shibayama N; Numata Y; Ikegami M; Miyasaka T
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15175-15182. PubMed ID: 32149492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensionality Control of SnO
    Zhao Y; Zhu J; He B; Tang Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11058-11066. PubMed ID: 33634693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-Induced Metallization and Defect Suppression at Zipper-like Interdigitated Atomically Thin Interfaces Enabling High-Efficiency Halide Perovskite Solar Cells.
    Tsvetkov N; Khan ME; Moon BC; Kim YH; Kang JK
    ACS Nano; 2021 Jan; 15(1):1805-1816. PubMed ID: 33320526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetron sputtered ZnO electron transporting layers for high performance perovskite solar cells.
    Niu H; Fang C; Wei X; Wang H; Wan L; Li Y; Mao X; Xu J; Zhou R
    Dalton Trans; 2021 May; 50(19):6477-6487. PubMed ID: 34002752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Simulation and Optimization of Highly Stable and Efficient Lead-Free Perovskite FA
    Sabbah H; Arayro J; Mezher R
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diluted-CdS Quantum Dot-Assisted SnO
    Lv Z; He L; Jiang H; Ma X; Wang F; Fan L; Wei M; Yang J; Yang L; Yang N
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16326-16335. PubMed ID: 33787224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.