These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37417728)

  • 1. Reconstructed Hierarchically Structured Keratin Fibers with Shape-Memory Features Based on Reversible Secondary-Structure Transformation.
    Xu X; Wang Z; Li M; Su Y; Zhang Q; Zhang S; Hu J
    Adv Mater; 2023 Oct; 35(41):e2304725. PubMed ID: 37417728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioinspired and hierarchically structured shape-memory material.
    Cera L; Gonzalez GM; Liu Q; Choi S; Chantre CO; Lee J; Gabardi R; Choi MC; Shin K; Parker KK
    Nat Mater; 2021 Feb; 20(2):242-249. PubMed ID: 32868876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape Memory Investigation of α-Keratin Fibers as Multi-Coupled Stimuli of Responsive Smart Materials.
    Xiao X; Hu J; Gui X; Qian K
    Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The susceptibility of disulfide bonds to modification in keratin fibers undergoing tensile stress.
    Harland DP; Popescu C; Richena M; Deb-Choudhury S; Wichlatz C; Lee E; Plowman JE
    Biophys J; 2022 Jun; 121(11):2168-2179. PubMed ID: 35477858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies.
    Xiao X; Hu J
    Sci Rep; 2016 May; 6():26393. PubMed ID: 27230823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart Actuators and Adhesives for Reconfigurable Matter.
    Ko H; Javey A
    Acc Chem Res; 2017 Apr; 50(4):691-702. PubMed ID: 28263544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biodegradable functional water-responsive shape memory polymer for biomedical applications.
    Guo Y; Lv Z; Huo Y; Sun L; Chen S; Liu Z; He C; Bi X; Fan X; You Z
    J Mater Chem B; 2019 Jan; 7(1):123-132. PubMed ID: 32254956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Self-Healing and Shape Memory Polymer that Functions at Body Temperature.
    Lai HY; Wang HQ; Lai JC; Li CH
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable photo-crosslinked starch-based films with excellent shape memory property.
    Zhou Y; Chi Z; Qi X; Wang W; Yu L; Dong Y; Qian C; Fu Y
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1685-1693. PubMed ID: 34748788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on Liquid Crystal Polymers in Free-Standing Reversible Shape Memory Materials.
    Wen Z; Yang K; Raquez JM
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32164147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the keratin/polyamide 6 composite fiber's structure and performance prepared by the optimized spinning process based on the rheological analysis.
    Li B; Sun Y; Yao J; Shen Y; Wu H; Li J; Yang M
    Int J Biol Macromol; 2022 Dec; 222(Pt A):938-949. PubMed ID: 36183757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid and biocompatible cellulose/polyurethane nanocomposites with water-activated shape memory properties.
    Urbina L; Alonso-Varona A; Saralegi A; Palomares T; Eceiza A; Corcuera MÁ; Retegi A
    Carbohydr Polym; 2019 Jul; 216():86-96. PubMed ID: 31047085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From fabric to tissue: Recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform.
    Suarato G; Contardi M; Perotto G; Heredia-Guerrero JA; Fiorentini F; Ceseracciu L; Pignatelli C; Debellis D; Bertorelli R; Athanassiou A
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111151. PubMed ID: 32806258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial cellulose reinforced double-network hydrogels for shape memory strand.
    Hua J; Liu C; Ng PF; Fei B
    Carbohydr Polym; 2021 May; 259():117737. PubMed ID: 33673998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers.
    Pisani S; Genta I; Modena T; Dorati R; Benazzo M; Conti B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.
    Esparza Y; Bandara N; Ullah A; Wu J
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():446-453. PubMed ID: 29853111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Tough Hydrogels with the Body Temperature-Responsive Shape Memory Effect.
    Liang R; Yu H; Wang L; Lin L; Wang N; Naveed KU
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43563-43572. PubMed ID: 31656069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.
    Liu Y; Li Y; Yang G; Zheng X; Zhou S
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4118-26. PubMed ID: 25647407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites.
    Liu Y; Li Y; Chen H; Yang G; Zheng X; Zhou S
    Carbohydr Polym; 2014 Apr; 104():101-8. PubMed ID: 24607166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.