These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37417885)

  • 1. Contrasting Changes in Strongly and Weakly Bound Hydration Water of a Protein upon Denaturation.
    Hishida M; Kaneko A; Yamamura Y; Saito K
    J Phys Chem B; 2023 Jul; 127(28):6296-6305. PubMed ID: 37417885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of hydrophobic hydration in protein stability: a 3D water-explicit protein model exhibiting cold and heat denaturation.
    Matysiak S; Debenedetti PG; Rossky PJ
    J Phys Chem B; 2012 Jul; 116(28):8095-104. PubMed ID: 22725973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct characterization of hydrophobic hydration during cold and pressure denaturation.
    Das P; Matysiak S
    J Phys Chem B; 2012 May; 116(18):5342-8. PubMed ID: 22512347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic hydration processes thermal and chemical denaturation of proteins.
    Fisicaro E; Compari C; Braibanti A
    Biophys Chem; 2011 Jun; 156(1):51-67. PubMed ID: 21482019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hydration structure of guanidinium and thiocyanate ions: implications for protein stability in aqueous solution.
    Mason PE; Neilson GW; Dempsey CE; Barnes AC; Cruickshank JM
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4557-61. PubMed ID: 12684536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly precise characterization of the hydration state upon thermal denaturation of human serum albumin using a 65 GHz dielectric sensor.
    Shiraga K; Urabe M; Matsui T; Kikuchi S; Ogawa Y
    Phys Chem Chem Phys; 2020 Sep; 22(35):19468-19479. PubMed ID: 32761010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the energetics of hydrophobic hydration of polypeptides.
    Matysiak S; Debenedetti PG; Rossky PJ
    J Phys Chem B; 2011 Dec; 115(49):14859-65. PubMed ID: 22035038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in the Protein Hydration and Hydrogen-Bond Network of Water Molecules Induced by the Changes in the Secondary Structures of Proteins Studied through Near-Infrared Spectroscopy.
    Ishigaki M; Kato Y; Chatani E; Ozaki Y
    J Phys Chem B; 2023 Aug; 127(32):7111-7122. PubMed ID: 37477646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.
    Miyawaki O; Dozen M; Hirota K
    J Biosci Bioeng; 2016 Aug; 122(2):203-7. PubMed ID: 26896315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Denaturation, Zero Entropy Temperature, and the Structure of Water around Hydrophobic and Amphiphilic Solutes.
    Tamoliu Nas K; Galamba N
    J Phys Chem B; 2020 Dec; 124(48):10994-11006. PubMed ID: 33201713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the hydration state of saccharides using terahertz time-domain attenuated total reflection spectroscopy.
    Shiraga K; Ogawa Y; Kondo N; Irisawa A; Imamura M
    Food Chem; 2013 Sep; 140(1-2):315-20. PubMed ID: 23578648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration of guanidinium: second shell formation at small cluster size.
    Cooper RJ; Heiles S; DiTucci MJ; Williams ER
    J Phys Chem A; 2014 Jul; 118(30):5657-66. PubMed ID: 24999751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy.
    Shiraga K; Suzuki T; Kondo N; Ogawa Y
    J Chem Phys; 2014 Dec; 141(23):235103. PubMed ID: 25527962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration Shells of DNA from the Point of View of Terahertz Time-Domain Spectroscopy.
    Penkova NA; Sharapov MG; Penkov NV
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water in the half shell: structure of water, focusing on angular structure and solvation.
    Sharp KA; Vanderkooi JM
    Acc Chem Res; 2010 Feb; 43(2):231-9. PubMed ID: 19845327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected.
    Sushko O; Dubrovka R; Donnan RS
    J Chem Phys; 2015 Feb; 142(5):055101. PubMed ID: 25662667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water structural transformation at molecular hydrophobic interfaces.
    Davis JG; Gierszal KP; Wang P; Ben-Amotz D
    Nature; 2012 Nov; 491(7425):582-5. PubMed ID: 23172216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water structure around hydrophobic amino acid side chain analogs using different water models.
    Hajari T; Bandyopadhyay S
    J Chem Phys; 2017 Jun; 146(22):225104. PubMed ID: 29166083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(9):094502. PubMed ID: 22957576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining THz spectroscopy and MD simulations to study protein-hydration coupling.
    Heyden M; Havenith M
    Methods; 2010 Sep; 52(1):74-83. PubMed ID: 20685393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.