These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3741796)

  • 1. Effects of an amphoteric surfactant on the skin barrier: an in vivo electro-physiological study.
    Borroni G; Berardesca E; Gabba P; Pericoli R; Pugliese PT; Bellosta M; Rabbiosi G
    Br J Dermatol; 1986 Aug; 115 Suppl 31():138-41. PubMed ID: 3741796
    [No Abstract]   [Full Text] [Related]  

  • 2. Surfactant depolarization of frog skin.
    Rennie GK; Hill JC; Goddard ED; Kulkarni RD
    J Pharm Pharmacol; 1975 May; 27(5):363-6. PubMed ID: 239140
    [No Abstract]   [Full Text] [Related]  

  • 3. [The modification of skin surface film by tensides. 2: Skin impedance changes as a function of concentration and constitution].
    Würbach G; Schiller F; Langguth K; Weidermann E; Braband J
    Dermatol Monatsschr; 1983 Apr; 169(4):248-52. PubMed ID: 6862068
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of solvents and surface active agents on the barrier function of the skin towards Sarin. 3. Restoration of the barrier function.
    Fredriksson T
    Acta Derm Venereol; 1969; 49(5):481-3. PubMed ID: 4186330
    [No Abstract]   [Full Text] [Related]  

  • 5. Ranking of aqueous surfactant-humectant systems based on an analysis of in vitro and in vivo skin barrier perturbation measurements.
    Ghosh S; Hornby S; Grove G; Zerwick C; Appa Y; Blankschtein D
    J Cosmet Sci; 2007; 58(6):599-620. PubMed ID: 18305874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Modification of skin surface film by tenside/lipid mixtures].
    Würbach G; Schiller F; Braband J
    Dermatol Monatsschr; 1985; 171(6):380-7. PubMed ID: 4018331
    [No Abstract]   [Full Text] [Related]  

  • 7. Determination of the response of skin to chemical agents by an in vitro procedure. I. Effect of unbuffered and buffered anionic surfactant solutions.
    CHOMAN BR
    J Invest Dermatol; 1961 Oct; 37():263-71. PubMed ID: 13879144
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of solid detergent washing on values of skin electrical impedance.
    Bernardi L; Soffiantino F; Fogari R; Borroni G; Bellosta M; Berardesca E
    Boll Soc Ital Biol Sper; 1982 Oct; 58(20):1303-8. PubMed ID: 7159524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mild but effective skin cleansing-Evaluation of laureth-23 as a primary surfactant.
    Dick A; Stolz HJ; Sonsmann FK
    Int J Cosmet Sci; 2024 Jun; 46(3):403-413. PubMed ID: 38196175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of surfactant-skin interactions by skin impedance measurements.
    Lu G; Moore DJ
    Int J Cosmet Sci; 2012 Feb; 34(1):74-80. PubMed ID: 21923733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Studies on the stretching capacity of human skin in relation to conditional and consitutional factors].
    Tronnier H; Jessen I
    Z Haut Geschlechtskr; 1968 Feb; 43(4):143-52. PubMed ID: 4233166
    [No Abstract]   [Full Text] [Related]  

  • 12. Skin surface electrical potential as an indicator of skin condition: observation of surfactant-induced dry skin and middle-aged skin.
    Kawai E; Kumazawa N; Ozawa K; Denda M
    Exp Dermatol; 2011 Sep; 20(9):757-9. PubMed ID: 21615507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of a non-ionic surfactant on the absorption and on the activity of diethylamine salicylates administered by the percutaneous route].
    BLANPIN O; BRETAUDEAU J
    Therapie; 1961; 16():946-64. PubMed ID: 13869850
    [No Abstract]   [Full Text] [Related]  

  • 14. Climatic influence on cosmetic skin parameters.
    Rohr M; Schrader K
    Curr Probl Dermatol; 1998; 26():151-64. PubMed ID: 9597325
    [No Abstract]   [Full Text] [Related]  

  • 15. The Comparison of Surface Free Energy of Human, Yucatan Micropig, and Hairless Mouse Skins and Influence of Surfactant on Surface Free Energy of the Skin.
    Fujii M; Kato K; Imai M; Kuwabara H; Awano M; Hashizaki K; Taguchi H
    Biol Pharm Bull; 2019 Feb; 42(2):295-298. PubMed ID: 30504641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of detergent-induced irritant skin reactions by visual scoring and transepidermal water loss measurement.
    Tupker RA; Pinnagoda J; Coenraads PJ; Nater JP
    Dermatol Clin; 1990 Jan; 8(1):33-5. PubMed ID: 2302862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skin capacitance imaging and corneosurfametry. A comparative assessment of the impact of surfactants on stratum corneum.
    Xhauflaire-Uhoda E; Loussouarn G; Haubrechts C; Léger DS; Piérard GE
    Contact Dermatitis; 2006 May; 54(5):249-53. PubMed ID: 16689808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using therapeutic ultrasound to promote irritated skin recovery after surfactant-induced barrier disruption.
    Chen YC; Wang PR; Lai TJ; Lu LH; Dai LW; Wang CH
    Ultrasonics; 2019 Jan; 91():206-212. PubMed ID: 30122437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect on the skin of the surfactant and bactericidal agents used for the sanitary treatment of factory dairy equipment].
    Alagezian RG
    Gig Sanit; 1974 Aug; 39(8):106-7. PubMed ID: 4461366
    [No Abstract]   [Full Text] [Related]  

  • 20. Contact angle studies on viable human skin. II. Effect of surfactant ionic type in pretreatment.
    Ginn ME; Dunn SC; Jungermann E
    J Am Oil Chem Soc; 1970 Mar; 47(3):83-5. PubMed ID: 5417525
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.