These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37418201)

  • 1. Role of a substrate binding pocket in the amino terminal domain of
    Singh D; Tripathi P; Sharma R; Grover S; Batra JK
    J Biomol Struct Dyn; 2024 Aug; 42(12):6189-6199. PubMed ID: 37418201
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system.
    Yin Y; Feng X; Yu H; Fay A; Kovach A; Glickman MS; Li H
    Cell Rep; 2021 May; 35(8):109166. PubMed ID: 34038719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The amino-terminal domain of
    Tripathi P; Parijat P; Patel VK; Batra JK
    FEBS Open Bio; 2018 Oct; 8(10):1669-1690. PubMed ID: 30338218
    [No Abstract]   [Full Text] [Related]  

  • 4. Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK.
    Lupoli TJ; Fay A; Adura C; Glickman MS; Nathan CF
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7947-E7956. PubMed ID: 27872278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClpB is an essential stress regulator of Mycobacterium tuberculosis and endows survival advantage to dormant bacilli.
    Tripathi P; Singh LK; Kumari S; Hakiem OR; Batra JK
    Int J Med Microbiol; 2020 Apr; 310(3):151402. PubMed ID: 32014406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress.
    Harnagel A; Lopez Quezada L; Park SW; Baranowski C; Kieser K; Jiang X; Roberts J; Vaubourgeix J; Yang A; Nelson B; Fay A; Rubin E; Ehrt S; Nathan C; Lupoli TJ
    Mol Microbiol; 2021 Feb; 115(2):272-289. PubMed ID: 32996193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP hydrolysis-coupled peptide translocation mechanism of
    Yu H; Lupoli TJ; Kovach A; Meng X; Zhao G; Nathan CF; Li H
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9560-E9569. PubMed ID: 30257943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of repurposed small molecule inhibitors of Mycobacterium tuberculosis caseinolytic protease B (ClpB) as anti-mycobacterials.
    Singh D; Sharma R; Jamal S; Agarwal M; Grover S; Batra JK
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130614. PubMed ID: 38447849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100.
    Kedzierska S; Matuszewska E
    FEMS Microbiol Lett; 2001 Nov; 204(2):355-60. PubMed ID: 11731148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli.
    Zolkiewski M
    J Biol Chem; 1999 Oct; 274(40):28083-6. PubMed ID: 10497158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of substrate-mimicking peptides with the AAA+ ATPase ClpB from Escherichia coli.
    Ranaweera CB; Glaza P; Yang T; Zolkiewski M
    Arch Biochem Biophys; 2018 Oct; 655():12-17. PubMed ID: 30092228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ClpB N-terminal domain plays a regulatory role in protein disaggregation.
    Rosenzweig R; Farber P; Velyvis A; Rennella E; Latham MP; Kay LE
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):E6872-81. PubMed ID: 26621746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amino-terminal domain of ClpB supports binding to strongly aggregated proteins.
    Barnett ME; Nagy M; Kedzierska S; Zolkiewski M
    J Biol Chem; 2005 Oct; 280(41):34940-5. PubMed ID: 16076845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic interactions between middle domain motif-1 and the AAA1 module of the bacterial ClpB chaperone are essential for protein disaggregation.
    Sugita S; Watanabe K; Hashimoto K; Niwa T; Uemura E; Taguchi H; Watanabe YH
    J Biol Chem; 2018 Dec; 293(50):19228-19239. PubMed ID: 30327424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence.
    Alam A; Golovliov I; Javed E; Kumar R; Ådén J; Sjöstedt A
    PLoS Pathog; 2020 Apr; 16(4):e1008466. PubMed ID: 32275693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DnaK chaperone-dependent disaggregation by caseinolytic peptidase B (ClpB) mutants reveals functional overlap in the N-terminal domain and nucleotide-binding domain-1 pore tyrosine.
    Doyle SM; Hoskins JR; Wickner S
    J Biol Chem; 2012 Aug; 287(34):28470-9. PubMed ID: 22745126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the N-terminal domain of Escherichia coli heat-shock protein ClpB and protein aggregates during chaperone activity.
    Tanaka N; Tani Y; Hattori H; Tada T; Kunugi S
    Protein Sci; 2004 Dec; 13(12):3214-21. PubMed ID: 15537752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between E. coli DnaK, ClpB and GrpE during protein disaggregation.
    Doyle SM; Shastry S; Kravats AN; Shih YH; Miot M; Hoskins JR; Stan G; Wickner S
    J Mol Biol; 2015 Jan; 427(2):312-27. PubMed ID: 25451597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved amino acid residues within the amino-terminal domain of ClpB are essential for the chaperone activity.
    Liu Z; Tek V; Akoev V; Zolkiewski M
    J Mol Biol; 2002 Aug; 321(1):111-20. PubMed ID: 12139937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.