These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 37418262)

  • 1. Development and Validation of a Machine Learning Model to Identify Patients Before Surgery at High Risk for Postoperative Adverse Events.
    Mahajan A; Esper S; Oo TH; McKibben J; Garver M; Artman J; Klahre C; Ryan J; Sadhasivam S; Holder-Murray J; Marroquin OC
    JAMA Netw Open; 2023 Jul; 6(7):e2322285. PubMed ID: 37418262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study.
    Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H
    JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty.
    Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A
    Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform.
    Ren Y; Loftus TJ; Datta S; Ruppert MM; Guan Z; Miao S; Shickel B; Feng Z; Giordano C; Upchurch GR; Rashidi P; Ozrazgat-Baslanti T; Bihorac A
    JAMA Netw Open; 2022 May; 5(5):e2211973. PubMed ID: 35576007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study.
    Corey KM; Kashyap S; Lorenzi E; Lagoo-Deenadayalan SA; Heller K; Whalen K; Balu S; Heflin MT; McDonald SR; Swaminathan M; Sendak M
    PLoS Med; 2018 Nov; 15(11):e1002701. PubMed ID: 30481172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Tool to Estimate Risk of 30-day Mortality and Complications After Hip Fracture Surgery: Accurate Enough for Some but Not All Purposes? A Study From the ACS-NSQIP Database.
    Harris AHS; Trickey AW; Eddington HS; Seib CD; Kamal RN; Kuo AC; Ding Q; Giori NJ
    Clin Orthop Relat Res; 2022 Dec; 480(12):2335-2346. PubMed ID: 35901441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications.
    Xue B; Li D; Lu C; King CR; Wildes T; Avidan MS; Kannampallil T; Abraham J
    JAMA Netw Open; 2021 Mar; 4(3):e212240. PubMed ID: 33783520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of a Multivariable Prediction Model for Postoperative Intensive Care Unit Stay in a Broad Surgical Population.
    Rozeboom PD; Henderson WG; Dyas AR; Bronsert MR; Colborn KL; Lambert-Kerzner A; Hammermeister KE; McIntyre RC; Meguid RA
    JAMA Surg; 2022 Apr; 157(4):344-352. PubMed ID: 35171216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting complication risk in spine surgery: a prospective analysis of a novel risk assessment tool.
    Veeravagu A; Li A; Swinney C; Tian L; Moraff A; Azad TD; Cheng I; Alamin T; Hu SS; Anderson RL; Shuer L; Desai A; Park J; Olshen RA; Ratliff JK
    J Neurosurg Spine; 2017 Jul; 27(1):81-91. PubMed ID: 28430052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple machine learning model for the prediction of acute kidney injury following noncardiac surgery in geriatric patients: a prospective cohort study.
    Peng X; Zhu T; Chen Q; Zhang Y; Zhou R; Li K; Hao X
    BMC Geriatr; 2024 Jun; 24(1):549. PubMed ID: 38918723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Machine Learning Models Including Preoperative, Intraoperative, and Postoperative Data and Mortality After Cardiac Surgery.
    Castela Forte J; Yeshmagambetova G; van der Grinten ML; Scheeren TWL; Nijsten MWN; Mariani MA; Henning RH; Epema AH
    JAMA Netw Open; 2022 Oct; 5(10):e2237970. PubMed ID: 36287565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery.
    Deng H; Eftekhari Z; Carlin C; Veerapong J; Fournier KF; Johnston FM; Dineen SP; Powers BD; Hendrix R; Lambert LA; Abbott DE; Vande Walle K; Grotz TE; Patel SH; Clarke CN; Staley CA; Abdel-Misih S; Cloyd JM; Lee B; Fong Y; Raoof M
    JAMA Netw Open; 2022 May; 5(5):e2212930. PubMed ID: 35612856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive validity of the ACS-NSQIP surgical risk calculator in geriatric patients undergoing lumbar surgery.
    Wang X; Hu Y; Zhao B; Su Y
    Medicine (Baltimore); 2017 Oct; 96(43):e8416. PubMed ID: 29069040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study.
    Sun R; Li S; Wei Y; Hu L; Xu Q; Zhan G; Yan X; He Y; Wang Y; Li X; Luo A; Zhou Z
    Int J Surg; 2024 May; 110(5):2950-2962. PubMed ID: 38445452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Intraoperative Data on Risk Prediction for Mortality After Intra-Abdominal Surgery.
    Yan X; Goldsmith J; Mohan S; Turnbull ZA; Freundlich RE; Billings FT; Kiran RP; Li G; Kim M
    Anesth Analg; 2022 Jan; 134(1):102-113. PubMed ID: 34908548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance assessment of the metastatic spinal tumor frailty index using machine learning algorithms: limitations and future directions.
    Massaad E; Williams N; Hadzipasic M; Patel SS; Fourman MS; Kiapour A; Schoenfeld AJ; Shankar GM; Shin JH
    Neurosurg Focus; 2021 May; 50(5):E5. PubMed ID: 33932935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study.
    Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H
    J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study.
    Peng X; Zhu T; Wang T; Wang F; Li K; Hao X
    BMC Anesthesiol; 2022 Sep; 22(1):284. PubMed ID: 36088288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support.
    Banerjee I; Sofela M; Yang J; Chen JH; Shah NH; Ball R; Mushlin AI; Desai M; Bledsoe J; Amrhein T; Rubin DL; Zamanian R; Lungren MP
    JAMA Netw Open; 2019 Aug; 2(8):e198719. PubMed ID: 31390040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.