BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37418328)

  • 1. High-Temperature-Operable Electromechanical Computing Units Enabled by Aligned Carbon Nanotube Arrays.
    Jo E; Kang Y; Sim S; Lee H; Kim J
    ACS Nano; 2023 Jul; 17(14):13310-13318. PubMed ID: 37418328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of a Carbon Nanotube Network on a Microelectromechanical Switch for Ultralong Contact Lifetime.
    Jo E; Seo MH; Pyo S; Ko SD; Kwon DS; Choi J; Yoon JB; Kim J
    ACS Appl Mater Interfaces; 2019 May; 11(20):18617-18625. PubMed ID: 31018637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Gold Nanoparticle-Carbon Nanotube Composite for Enhanced Contact Lifetime of Microelectromechanical Switches with Very Low Contact Resistance.
    Jo E; Lee YB; Jung Y; Kim SB; Kang Y; Seo MH; Yoon JB; Kim J
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16959-16967. PubMed ID: 33797217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors.
    Lee SY; Lee SW; Kim SM; Yu WJ; Jo YW; Lee YH
    ACS Nano; 2011 Mar; 5(3):2369-75. PubMed ID: 21370895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition.
    Dong K; Choe HS; Wang X; Liu H; Saha B; Ko C; Deng Y; Tom KB; Lou S; Wang L; Grigoropoulos CP; You Z; Yao J; Wu J
    Small; 2018 Apr; 14(14):e1703621. PubMed ID: 29479803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. >1000-Fold Lifetime Extension of a Nickel Electromechanical Contact Device via Graphene.
    Seo MH; Ko JH; Lee JO; Ko SD; Mun JH; Cho BJ; Kim YH; Yoon JB
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):9085-9093. PubMed ID: 29461033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary logic gate arrays based on carbon nanotube network transistors.
    Gao P; Zou J; Li H; Zhang K; Zhang Q
    Small; 2013 Mar; 9(6):813-9. PubMed ID: 23208943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromechanical computing at 500 degrees C with silicon carbide.
    Lee TH; Bhunia S; Mehregany M
    Science; 2010 Sep; 329(5997):1316-8. PubMed ID: 20829479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays.
    Liu C; Cao Y; Wang B; Zhang Z; Lin Y; Xu L; Yang Y; Jin C; Peng LM; Zhang Z
    ACS Nano; 2022 Dec; 16(12):21482-21490. PubMed ID: 36416375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube complementary wrap-gate transistors.
    Franklin AD; Koswatta SO; Farmer DB; Smith JT; Gignac L; Breslin CM; Han SJ; Tulevski GS; Miyazoe H; Haensch W; Tersoff J
    Nano Lett; 2013 Jun; 13(6):2490-5. PubMed ID: 23638708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical-reconfigurable carbon nanotube and indium-tin-oxide complementary thin-film transistor logic gates.
    Zou J; Zhang K; Cai W; Chen T; Nathan A; Zhang Q
    Nanoscale; 2018 Jul; 10(27):13122-13129. PubMed ID: 29963667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically Flexible and High-Performance CMOS Logic Circuits.
    Honda W; Arie T; Akita S; Takei K
    Sci Rep; 2015 Oct; 5():15099. PubMed ID: 26459882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research and Analysis of MEMS Switches in Different Frequency Bands.
    Tian W; Li P; Yuan L
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cascaded Logic Gates Based on High-Performance Ambipolar Dual-Gate WSe
    Li X; Zhou P; Hu X; Rivers E; Watanabe K; Taniguchi T; Akinwande D; Friedman JS; Incorvia JAC
    ACS Nano; 2023 Jul; 17(13):12798-12808. PubMed ID: 37377371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors.
    Yu WJ; Kim UJ; Kang BR; Lee IH; Lee EH; Lee YH
    Nano Lett; 2009 Apr; 9(4):1401-5. PubMed ID: 19281215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control.
    Geier ML; Prabhumirashi PL; McMorrow JJ; Xu W; Seo JW; Everaerts K; Kim CH; Marks TJ; Hersam MC
    Nano Lett; 2013 Oct; 13(10):4810-4. PubMed ID: 24020970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics.
    Liu L; Han J; Xu L; Zhou J; Zhao C; Ding S; Shi H; Xiao M; Ding L; Ma Z; Jin C; Zhang Z; Peng LM
    Science; 2020 May; 368(6493):850-856. PubMed ID: 32439787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of interfacial adhesion between the top ends of carbon nanotubes.
    Choi J; Eun Y; Kim J
    ACS Appl Mater Interfaces; 2014 May; 6(9):6598-605. PubMed ID: 24684399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible carbon nanotube Schottky diode and its integrated circuit applications.
    Lee Y; Jung H; Choi B; Yoon J; Yoo HB; Kim HJ; Park GH; Kim DM; Kim DH; Kang MH; Choi SJ
    RSC Adv; 2019 Jul; 9(38):22124-22128. PubMed ID: 35518852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.