These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37418399)
1. The Effects of Auditory, Visual, and Cognitive Distractions on Cybersickness in Virtual Reality. Venkatakrishnan R; Venkatakrishnan R; Raveendranath B; Sarno DM; Robb AC; Lin WC; Babu SV IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):5350-5369. PubMed ID: 37418399 [TBL] [Abstract][Full Text] [Related]
2. The Effects of Secondary Task Demands on Cybersickness in Active Exploration Virtual Reality Experiences. Venkatakrishnan R; Venkatakrishnan R; Raveendranath B; Canales R; Sarno DM; Robb AC; Lin WC; Babu SV IEEE Trans Vis Comput Graph; 2024 May; 30(5):2745-2755. PubMed ID: 38437100 [TBL] [Abstract][Full Text] [Related]
3. Is Video Gaming a Cure for Cybersickness? Gamers Experience Less Cybersickness Than Non-Gamers in a VR Self-Motion Task. Pohlmann KMT; Li G; Wilson G; McGill M; Pollick F; Brewster S IEEE Trans Vis Comput Graph; 2024 Nov; 30(11):7225-7233. PubMed ID: 39255120 [TBL] [Abstract][Full Text] [Related]
4. The impact of virtual reality and distractors on attentional processes: insights from EEG. Pappalettera C; Miraglia F; Cacciotti A; Nucci L; Tufo G; Rossini PM; Vecchio F Pflugers Arch; 2024 Nov; 476(11):1727-1742. PubMed ID: 39158612 [TBL] [Abstract][Full Text] [Related]
5. SmoothRide: A Versatile Solution to Combat Cybersickness in Elevation-Altering Environments. Ang S; Quarles J IEEE Trans Vis Comput Graph; 2024 Nov; 30(11):7152-7161. PubMed ID: 39255132 [TBL] [Abstract][Full Text] [Related]
6. Modulation of EEG Signals by Visual and Auditory Distractors in Virtual Reality-Based Continuous Performance Tests. Wang P; Zhang X; Ai X; Wang S IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2049-2059. PubMed ID: 38801679 [TBL] [Abstract][Full Text] [Related]
7. Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments. Sevinc V; Berkman MI Appl Ergon; 2020 Jan; 82():102958. PubMed ID: 31563798 [TBL] [Abstract][Full Text] [Related]
8. Modeling the Impact of Head-Body Rotations on Audio-Visual Spatial Perception for Virtual Reality Applications. Bernal-Berdun E; Vallejo M; Sun Q; Serrano A; Gutierrez D IEEE Trans Vis Comput Graph; 2024 May; 30(5):2624-2632. PubMed ID: 38446650 [TBL] [Abstract][Full Text] [Related]
9. Studying the Effects of Congruence of Auditory and Visual Stimuli on Virtual Reality Experiences. Kim H; Lee IK IEEE Trans Vis Comput Graph; 2022 May; 28(5):2080-2090. PubMed ID: 35167477 [TBL] [Abstract][Full Text] [Related]
10. Understanding How Virtual Reality Can Support Mindfulness Practice: Mixed Methods Study. Seabrook E; Kelly R; Foley F; Theiler S; Thomas N; Wadley G; Nedeljkovic M J Med Internet Res; 2020 Mar; 22(3):e16106. PubMed ID: 32186519 [TBL] [Abstract][Full Text] [Related]
11. Factors Affecting Enjoyment of Virtual Reality Games: A Comparison Involving Consumer-Grade Virtual Reality Technology. Shafer DM; Carbonara CP; Korpi MF Games Health J; 2019 Feb; 8(1):15-23. PubMed ID: 30199273 [TBL] [Abstract][Full Text] [Related]
12. Mitigating Cybersickness in Virtual Reality Systems through Foveated Depth-of-Field Blur. Hussain R; Chessa M; Solari F Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200616 [TBL] [Abstract][Full Text] [Related]
13. The impact of positive, negative and neutral stimuli in a virtual reality cognitive-motor rehabilitation task: a pilot study with stroke patients. Cameirão MS; Faria AL; Paulino T; Alves J; Bermúdez I Badia S J Neuroeng Rehabil; 2016 Aug; 13(1):70. PubMed ID: 27503215 [TBL] [Abstract][Full Text] [Related]
14. Investigating the impact of greenery elements in office environments on cognitive performance, visual attention and distraction: An eye-tracking pilot-study in virtual reality. Latini A; Marcelli L; Di Giuseppe E; D'Orazio M Appl Ergon; 2024 Jul; 118():104286. PubMed ID: 38583317 [TBL] [Abstract][Full Text] [Related]
15. The effects of auditory background noise and virtual reality technology on video game distraction analgesia. Zeroth JA; Dahlquist LM; Foxen-Craft EC Scand J Pain; 2019 Jan; 19(1):207-217. PubMed ID: 30422807 [TBL] [Abstract][Full Text] [Related]
16. Studying the Influence of Multisensory Stimuli on a Firefighting Training Virtual Environment. Narciso D; Melo M; Rodrigues S; Cunha JP; Vasconcelos-Raposo J; Bessa M IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):4122-4136. PubMed ID: 37028005 [TBL] [Abstract][Full Text] [Related]
17. Immersive Process Model Exploration in Virtual Reality. Zenner A; Makhsadov A; Klingner S; Liebemann D; Kruger A IEEE Trans Vis Comput Graph; 2020 May; 26(5):2104-2114. PubMed ID: 32070982 [TBL] [Abstract][Full Text] [Related]
18. Floor-vibration VR: Mitigating Cybersickness Using Whole-body Tactile Stimuli in Highly Realistic Vehicle Driving Experiences. Jung S; Li R; McKee R; Whitton MC; Lindeman RW IEEE Trans Vis Comput Graph; 2021 May; 27(5):2669-2680. PubMed ID: 33760736 [TBL] [Abstract][Full Text] [Related]
19. Face and construct validation of a next generation virtual reality (Gen2-VR) surgical simulator. Sankaranarayanan G; Li B; Manser K; Jones SB; Jones DB; Schwaitzberg S; Cao CG; De S Surg Endosc; 2016 Mar; 30(3):979-85. PubMed ID: 26092010 [TBL] [Abstract][Full Text] [Related]
20. Reduction of cybersickness during and immediately following noisy galvanic vestibular stimulation. Weech S; Wall T; Barnett-Cowan M Exp Brain Res; 2020 Feb; 238(2):427-437. PubMed ID: 31938844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]