These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 3741844)

  • 41. A comparison of the heme electronic states in equilibrium and nonequilibrium protein conformations of high-spin ferrous hemoproteins. Low temperature magnetic circular dichroism studies.
    Sharonov YA; Sharonova NA; Figlovsky VA; Grigorjev VA
    Biochim Biophys Acta; 1982 Dec; 709(2):332-41. PubMed ID: 6295493
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulating the nitrite reductase activity of globins by varying the heme substituents: Utilizing myoglobin as a model system.
    Galinato MG; Fogle RS; Stetz A; Galan JF
    J Inorg Biochem; 2016 Jan; 154():7-20. PubMed ID: 26544504
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies on the heme environment of horse heart ferric cytochrome c. Azide and imidazole complexes of ferric cytochrome c.
    Ikeda-Saito M; Iizuka T
    Biochim Biophys Acta; 1975 Jun; 393(2):335-42. PubMed ID: 167834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ligand binding properties of myoglobin reconstituted with iron porphycene: unusual O2 binding selectivity against CO binding.
    Matsuo T; Dejima H; Hirota S; Murata D; Sato H; Ikegami T; Hori H; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2004 Dec; 126(49):16007-17. PubMed ID: 15584735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solvent effect on MCD of Fe(III) heme complexes: magnetic circular dichroism spectra of five-coordinated high-spin iron(III) protoporphyrin-IX-dimethylester in the visible region and their environmental effect. A characterization of the visible electronic transitions in Fe(III) high-spin porphyrins.
    Ookubo S; Nozawa T; Hatano M
    J Inorg Biochem; 1989 Apr; 35(4):305-17. PubMed ID: 2709005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structures of unligated and CN-ligated Glycera dibranchiata monomer ferric hemoglobin components III and IV.
    Park HJ; Yang C; Treff N; Satterlee JD; Kang C
    Proteins; 2002 Oct; 49(1):49-60. PubMed ID: 12211015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs).
    Ioannou A; Varotsis C
    PLoS One; 2017; 12(11):e0188095. PubMed ID: 29136023
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitrite reduction by Co(II) and Mn(II) substituted myoglobins: towards understanding necessary components of Mb nitrite reductase activity.
    Heinecke JL; Yi J; Pereira JC; Richter-Addo GB; Ford PC
    J Inorg Biochem; 2012 Feb; 107(1):47-53. PubMed ID: 22178665
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectral studies of magnesium porphyrin--apomyoglobin and apohemoglobin complexes.
    Ong CC; Rodley GA
    J Inorg Biochem; 1983 Nov; 19(3):189-202. PubMed ID: 6644293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protoheme conformations in low-spin ferrohemoproteins. Resonance Raman spectroscopy.
    Desbois A; Lutz M; Banerjee R
    Biochim Biophys Acta; 1981 Dec; 671(2):184-92. PubMed ID: 7198917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reaction of nitric oxide with heme proteins: studies on metmyoglobin, opossum methemoglobin, and microperoxidase.
    Sharma VS; Isaacson RA; John ME; Waterman MR; Chevion M
    Biochemistry; 1983 Aug; 22(16):3897-902. PubMed ID: 6311256
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitric oxide scavenging by Mycobacterium leprae GlbO involves the formation of the ferric heme-bound peroxynitrite intermediate.
    Ascenzi P; Bocedi A; Bolognesi M; Fabozzi G; Milani M; Visca P
    Biochem Biophys Res Commun; 2006 Jan; 339(1):450-6. PubMed ID: 16307730
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases.
    Zhao X; Nilges MJ; Lu Y
    Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Redox effects on the coordination geometry and heme conformation of bis(N-methylimidazole) complexes of superstructured Fe-porphyrins. A spectroscopic study.
    Le Moigne C; Picaud T; Boussac A; Loock B; Momenteau M; Desbois A
    Inorg Chem; 2009 Nov; 48(21):10084-92. PubMed ID: 19852518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species.
    Franzen S; Bohn B; Poyart C; Martin JL
    Biochemistry; 1995 Jan; 34(4):1224-37. PubMed ID: 7827072
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetic circular dichroism of myoglobin-thiolate complexes.
    Shimizu T; Nozawa T; Hatano M
    Biochim Biophys Acta; 1976 May; 434(1):126-36. PubMed ID: 7306
    [TBL] [Abstract][Full Text] [Related]  

  • 58. EPR studies on the photoproducts of manganese(II) protoporphyrin-IX substituted myoglobin nitrosyl complexes trapped at low temperature: effects of site-specific chemical modification of the distal histidine on ligand-binding structures.
    Masuya F; Hori H
    Biochim Biophys Acta; 1993 Nov; 1203(1):99-103. PubMed ID: 8218396
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pulse radiolysis studies of the reactions of CO3*- and NO2* with nitrosyl(II)myoglobin and nitrosyl(II)hemoglobin.
    Boccini F; Domazou AS; Herold S
    J Phys Chem A; 2006 Mar; 110(11):3927-32. PubMed ID: 16539414
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two enzymes with a common function but different heme ligands in the forms as isolated. Optical and magnetic properties of the heme groups in the oxidized forms of nitrite reductase, cytochrome cd1, from Pseudomonas stutzeri and Thiosphaera pantotropha.
    Cheesman MR; Ferguson SJ; Moir JW; Richardson DJ; Zumft WG; Thomson AJ
    Biochemistry; 1997 Dec; 36(51):16267-76. PubMed ID: 9405061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.