BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 3741853)

  • 1. Effect of hyperglycemia on D-glucose transport across the brush-border and basolateral membrane of rat small intestine.
    Maenz DD; Cheeseman CI
    Biochim Biophys Acta; 1986 Aug; 860(2):277-85. PubMed ID: 3741853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of glucose transport across rat enterocyte basolateral membrane in response to altered dietary carbohydrate intake.
    Cheeseman CI; Harley B
    J Physiol; 1991 Jun; 437():563-75. PubMed ID: 1890649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased transport of D-glucose and L-alanine across brush-border membrane vesicles from small intestine of rats treated with mitomycin C.
    Mizuno M; Yoshino H; Hashida M; Sezaki H
    Biochim Biophys Acta; 1987 Aug; 902(1):93-100. PubMed ID: 3111535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid adaptation of intestinal glucose transport: a brush-border or basolateral phenomenon?
    Karasov WH; Debnam ES
    Am J Physiol; 1987 Jul; 253(1 Pt 1):G54-61. PubMed ID: 3605337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid regulation of D-glucose transport in basolateral membrane of rat jejunum.
    Cheeseman CI; Maenz DD
    Am J Physiol; 1989 May; 256(5 Pt 1):G878-83. PubMed ID: 2655474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental maturation of D-glucose transport by rat jejunal brush-border membrane vesicles.
    Ghishan FK; Wilson FA
    Am J Physiol; 1985 Jan; 248(1 Pt 1):G87-92. PubMed ID: 4038441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycodeoxycholate transport in brush border membrane vesicles isolated from rat jejunum and ileum.
    Wilson FA; Treanor LL
    Biochim Biophys Acta; 1979 Jul; 554(2):430-40. PubMed ID: 486452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brush border transport of glutamine and other substrates during sepsis and endotoxemia.
    Salloum RM; Copeland EM; Souba WW
    Ann Surg; 1991 May; 213(5):401-9; discussion 409-10. PubMed ID: 2025060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximo-distal gradient of Na+-dependent D-glucose transport activity in the brush border membrane vesicles from the human fetal small intestine.
    Malo C; Berteloot A
    FEBS Lett; 1987 Aug; 220(1):201-5. PubMed ID: 3609312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in amino acid and glucose transport in brush-border membrane vesicles of hyperglycemic guinea-pig small intestine.
    Satoh O; Koyama S; Yamada K; Kawasaki T
    Biochim Biophys Acta; 1991 Mar; 1063(1):155-61. PubMed ID: 1826612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in glucose uptake by and phlorizin binding to brush-border membrane vesicles of small intestine from streptozotocin-induced diabetic rats.
    Tsuji Y; Yamada K; Hosoya N; Takai K; Moriuchi S
    J Nutr Sci Vitaminol (Tokyo); 1988 Jun; 34(3):327-34. PubMed ID: 3183781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the ileal Na+/bile salt co-transporter in brush border membrane vesicles and functional expression in Xenopus laevis oocytes.
    Mullins JG; Beechey RB; Gould GW; Campbell FC; Shirazi-Beechey SP
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):785-90. PubMed ID: 1497617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Absorption of D-glucose by the small intestine of the human fetus (using brush border membrane vesicles of the jejunum)].
    Iioka H; Moriyama IS; Hino K; Itani Y; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Mar; 39(3):347-51. PubMed ID: 3559320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetes mellitus and the sodium electrochemical gradient across the brush border membrane of rat intestinal enterocytes.
    Debnam ES; Ebrahim HY
    J Endocrinol; 1989 Dec; 123(3):453-9. PubMed ID: 2607255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal bile acid absorption. Na(+)-dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93-kDa and a peripheral 14-kDa bile acid-binding membrane protein along the duodenum-ileum axis.
    Kramer W; Girbig F; Gutjahr U; Kowalewski S; Jouvenal K; Müller G; Tripier D; Wess G
    J Biol Chem; 1993 Aug; 268(24):18035-46. PubMed ID: 8349683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of apparent L-amino acid diffusion in porcine jejunal enterocyte brush border membrane vesicles.
    Fan MZ; Adeola ; Asem EK
    Physiol Res; 2001; 50(4):373-81. PubMed ID: 11551143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-dependent D-glucose transport in brush-border membrane vesicles from isolated rat small intestinal villus and crypt epithelial cells.
    Freeman HJ; Johnston G; Quamme GA
    Can J Physiol Pharmacol; 1987 Jun; 65(6):1213-9. PubMed ID: 3621069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oleic acid uptake by jejunal and ileal rat brush border membrane vesicles.
    Prieto RM; Stremmel W; Sales C; Tur JA
    Eur J Med Res; 1996 Jan; 1(4):199-203. PubMed ID: 9386269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aboral changes in D-glucose transport by human intestinal brush-border membrane vesicles.
    Bluett MK; Abumrad NN; Arab N; Ghishan FK
    Biochem J; 1986 Jul; 237(1):229-34. PubMed ID: 3800877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.