These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37418721)

  • 1. Acoustic Waves Induced by Einstein-de Haas Effect in the Ultrafast Core Reversal of Magnetic Vortex.
    Sun J; Shi S; Wang J
    Phys Rev Lett; 2023 Jun; 130(25):256701. PubMed ID: 37418721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ultrafast Einstein-de Haas effect.
    Dornes C; Acremann Y; Savoini M; Kubli M; Neugebauer MJ; Abreu E; Huber L; Lantz G; Vaz CAF; Lemke H; Bothschafter EM; Porer M; Esposito V; Rettig L; Buzzi M; Alberca A; Windsor YW; Beaud P; Staub U; Zhu D; Song S; Glownia JM; Johnson SL
    Nature; 2019 Jan; 565(7738):209-212. PubMed ID: 30602792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and High-Purity Sound Frequency Conversion with a Passive Linear Metasurface.
    Wang W; Hu C; Ni J; Ding Y; Weng J; Liang B; Qiu CW; Cheng JC
    Adv Sci (Weinh); 2022 Nov; 9(33):e2203482. PubMed ID: 36253153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarized phonons carry angular momentum in ultrafast demagnetization.
    Tauchert SR; Volkov M; Ehberger D; Kazenwadel D; Evers M; Lange H; Donges A; Book A; Kreuzpaintner W; Nowak U; Baum P
    Nature; 2022 Feb; 602(7895):73-77. PubMed ID: 35110761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz electric-field-driven dynamical multiferroicity in SrTiO
    Basini M; Pancaldi M; Wehinger B; Udina M; Unikandanunni V; Tadano T; Hoffmann MC; Balatsky AV; Bonetti S
    Nature; 2024 Apr; 628(8008):534-539. PubMed ID: 38600387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.
    Tsai YY; I L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013106. PubMed ID: 25122400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling.
    Xu M; Yamamoto K; Puebla J; Baumgaertl K; Rana B; Miura K; Takahashi H; Grundler D; Maekawa S; Otani Y
    Sci Adv; 2020 Aug; 6(32):eabb1724. PubMed ID: 32821833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point vortex model for prediction of sound generated by a wing with flap interacting with a passing vortex.
    Manela A; Huang L
    J Acoust Soc Am; 2013 Apr; 133(4):1934-44. PubMed ID: 23556563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point.
    Liu T; An S; Gu Z; Liang S; Gao H; Ma G; Zhu J
    Sci Bull (Beijing); 2022 Jun; 67(11):1131-1136. PubMed ID: 36545979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic vortex core reversal by excitation with short bursts of an alternating field.
    Van Waeyenberge B; Puzic A; Stoll H; Chou KW; Tyliszczak T; Hertel R; Fähnle M; Brückl H; Rott K; Reiss G; Neudecker I; Weiss D; Back CH; Schütz G
    Nature; 2006 Nov; 444(7118):461-4. PubMed ID: 17122851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Detection in Droplet Microfluidics by Acoustic Vortex Modulation of Particle Rings and Particle Clusters via Asymmetric Propagation of Surface Acoustic Waves.
    Liu Y; Ji M; Yu N; Zhao C; Xue G; Fu W; Qiao X; Zhang Y; Chou X; Geng W
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves.
    Foerster M; Macià F; Statuto N; Finizio S; Hernández-Mínguez A; Lendínez S; Santos PV; Fontcuberta J; Hernàndez JM; Kläui M; Aballe L
    Nat Commun; 2017 Sep; 8(1):407. PubMed ID: 28864819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-orbit interactions of transverse sound.
    Wang S; Zhang G; Wang X; Tong Q; Li J; Ma G
    Nat Commun; 2021 Oct; 12(1):6125. PubMed ID: 34675212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnonic Einstein-de Haas Effect: Ultrafast Rotation of Magnonic Microspheres.
    Kani A; Quijandría F; Twamley J
    Phys Rev Lett; 2022 Dec; 129(25):257201. PubMed ID: 36608253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time reversal of flexural waves in a beam at audible frequency.
    Francoeur D; Berry A
    J Acoust Soc Am; 2008 Aug; 124(2):1006-17. PubMed ID: 18681592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex core reversal due to spin wave interference.
    Bauer HG; Sproll M; Back CH; Woltersdorf G
    Phys Rev Lett; 2014 Feb; 112(7):077201. PubMed ID: 24579629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry.
    Stebliy ME; Kolesnikov AG; Ognev AV; Samardak AS; Chebotkevich LA
    Beilstein J Nanotechnol; 2015; 6():697-703. PubMed ID: 25821709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time dynamics of angular momentum transfer from spin to acoustic chiral phonon in oxide heterostructures.
    Choi IH; Jeong SG; Song S; Park S; Shin DB; Choi WS; Lee JS
    Nat Nanotechnol; 2024 Sep; 19(9):1277-1282. PubMed ID: 38997512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.