These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37418721)

  • 21. Magneto-acoustic imaging by continuous-wave excitation.
    Shunqi Z; Zhou X; Tao Y; Zhipeng L
    Med Biol Eng Comput; 2017 Apr; 55(4):595-607. PubMed ID: 27370787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of Gyromagnetic Spin Wave Resonance in NiFe Films.
    Kurimune Y; Matsuo M; Nozaki Y
    Phys Rev Lett; 2020 May; 124(21):217205. PubMed ID: 32530648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brillouin Light Scattering from Magnetic Excitations.
    Yoshihara A
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II.
    Sachs S; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer.
    Sun Y; Zhang T; Zheng D
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic vortex core reversal by excitation of spin waves.
    Kammerer M; Weigand M; Curcic M; Noske M; Sproll M; Vansteenkiste A; Van Waeyenberge B; Stoll H; Woltersdorf G; Back CH; Schuetz G
    Nat Commun; 2011; 2():279. PubMed ID: 21505435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orbital Angular Momentum Reversal and Asymmetry in Acoustic Vortex Beam Reflection.
    Zou Z; Lirette R; Zhang L
    Phys Rev Lett; 2020 Aug; 125(7):074301. PubMed ID: 32857576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum Einstein-de Haas effect.
    Ganzhorn M; Klyatskaya S; Ruben M; Wernsdorfer W
    Nat Commun; 2016 Apr; 7():11443. PubMed ID: 27126449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exchange biased surface acoustic wave magnetic field sensors.
    Schell V; Spetzler E; Wolff N; Bumke L; Kienle L; McCord J; Quandt E; Meyners D
    Sci Rep; 2023 May; 13(1):8446. PubMed ID: 37231050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface acoustic wave assisted depinning of magnetic domain walls.
    Adhikari A; Gilroy ER; Hayward TJ; Adenwalla S
    J Phys Condens Matter; 2021 Jun; 33(31):. PubMed ID: 34010816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Universal criterion and phase diagram for switching a magnetic vortex core in soft magnetic nanodots.
    Lee KS; Kim SK; Yu YS; Choi YS; Guslienko KY; Jung H; Fischer P
    Phys Rev Lett; 2008 Dec; 101(26):267206. PubMed ID: 19437670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phononic switching of magnetization by the ultrafast Barnett effect.
    Davies CS; Fennema FGN; Tsukamoto A; Razdolski I; Kimel AV; Kirilyuk A
    Nature; 2024 Apr; 628(8008):540-544. PubMed ID: 38600386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical study of the scattering of acoustic waves by an elliptic vortex.
    Martin-Martin L; Clair V; Bogey C; Gabard G
    J Acoust Soc Am; 2024 Mar; 155(3):1707-1718. PubMed ID: 38426838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topologically crafted spatiotemporal vortices in acoustics.
    Zhang H; Sun Y; Huang J; Wu B; Yang Z; Bliokh KY; Ruan Z
    Nat Commun; 2023 Oct; 14(1):6238. PubMed ID: 37803024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical switching of the vortex core in a magnetic disk.
    Yamada K; Kasai S; Nakatani Y; Kobayashi K; Kohno H; Thiaville A; Ono T
    Nat Mater; 2007 Apr; 6(4):269-3. PubMed ID: 17369832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation research on magneto-acoustic concentration tomography of magnetic nanoparticles with magnetic induction.
    Shi X; Liu G; Yan X; Li Y
    Comput Biol Med; 2020 Apr; 119():103653. PubMed ID: 32090899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Einstein-de Haas effect in an Fe
    Wells T; Foulkes WMC; Dudarev SL; Horsfield AP
    J Phys Condens Matter; 2023 Sep; 35(49):. PubMed ID: 37567221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic vortex state stability, reversal and dynamics in restricted geometries.
    Guslienko KY
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2745-60. PubMed ID: 18681013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.