These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37418728)

  • 1. Current Noise of Hydrodynamic Electrons.
    Hui A; Skinner B
    Phys Rev Lett; 2023 Jun; 130(25):256301. PubMed ID: 37418728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Johnson Noise
    Qu JF; Benz SP; Rogalla H; Tew WL; White DR; Zhou KL
    Meas Sci Technol; 2019; 30(11):. PubMed ID: 38915953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene.
    Crossno J; Shi JK; Wang K; Liu X; Harzheim A; Lucas A; Sachdev S; Kim P; Taniguchi T; Watanabe K; Ohki TA; Fong KC
    Science; 2016 Mar; 351(6277):1058-61. PubMed ID: 26912362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved electronic determination of the Boltzmann constant by Johnson noise thermometry.
    Qu J; Benz SP; Coakley K; Rogalla H; Tew WL; White R; Zhou K; Zhou Z
    Metrologia; 2017 Aug; 54(4):549-558. PubMed ID: 28970638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise thermometry at ultra-low temperatures.
    Rothfuss D; Reiser A; Fleischmann A; Enss C
    Philos Trans A Math Phys Eng Sci; 2016 Mar; 374(2064):20150051. PubMed ID: 26903101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Electron Hydrodynamics Can Eliminate the Landauer-Sharvin Resistance.
    Stern A; Scaffidi T; Reuven O; Kumar C; Birkbeck J; Ilani S
    Phys Rev Lett; 2022 Oct; 129(15):157701. PubMed ID: 36269972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic mass and Johnson-Nyquist noise.
    Chee J; Yoon H; Qin L; Ham D
    Nanotechnology; 2015 Sep; 26(35):354002. PubMed ID: 26266548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary electronic thermometry using the shot noise of a tunnel junction.
    Spietz L; Lehnert KW; Siddiqi I; Schoelkopf RJ
    Science; 2003 Jun; 300(5627):1929-32. PubMed ID: 12817144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-bandwidth, variable-resistance differential noise thermometry.
    Talanov AV; Waissman J; Taniguchi T; Watanabe K; Kim P
    Rev Sci Instrum; 2021 Jan; 92(1):014904. PubMed ID: 33514211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-mode auto-calibrating resistance thermometer: A novel approach with Johnson noise thermometry.
    Drung D; Krause C
    Rev Sci Instrum; 2021 Mar; 92(3):034901. PubMed ID: 33820087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudo-Hydrodynamic Flow of Quasiparticles in Semimetal WTe
    Choi YG; Doan MH; Ngoc LLP; Lee J; Choi GM; Chernodub MN
    Small; 2023 Jul; 19(27):e2206604. PubMed ID: 36960494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony.
    Jaoui A; Fauqué B; Behnia K
    Nat Commun; 2021 Jan; 12(1):195. PubMed ID: 33420029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level noise source for the calibration of Johnson noise power thermometers.
    Blalock TV; Borkowski CJ
    Rev Sci Instrum; 1978 Aug; 49(8):1046. PubMed ID: 18699251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Temperature Thermal Transport Characteristics in Epitaxial Bilayer Graphene Microbridges.
    Li F; Miao W; Yu C; He Z; Wang Q; Zhong J; Wu F; Wang Z; Zhou K; Ren Y; Zhang W; Li J; Shi S; Liu Q; Feng Z
    ACS Omega; 2024 May; 9(21):23053-23059. PubMed ID: 38826519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SQUID-based current sensing noise thermometry for quantum resistors at dilution refrigerator temperatures.
    Kleinbaum E; Shingla V; Csáthy GA
    Rev Sci Instrum; 2017 Mar; 88(3):034902. PubMed ID: 28372392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids.
    Principi A; Vignale G
    Phys Rev Lett; 2015 Jul; 115(5):056603. PubMed ID: 26274433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of vortices in an electron fluid.
    Aharon-Steinberg A; Völkl T; Kaplan A; Pariari AK; Roy I; Holder T; Wolf Y; Meltzer AY; Myasoedov Y; Huber ME; Yan B; Falkovich G; Levitov LS; Hücker M; Zeldov E
    Nature; 2022 Jul; 607(7917):74-80. PubMed ID: 35794267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot electron cooling by acoustic phonons in graphene.
    Betz AC; Vialla F; Brunel D; Voisin C; Picher M; Cavanna A; Madouri A; Fève G; Berroir JM; Plaçais B; Pallecchi E
    Phys Rev Lett; 2012 Aug; 109(5):056805. PubMed ID: 23006198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy loss of the electron system in individual single-walled carbon nanotubes.
    Santavicca DF; Chudow JD; Prober DE; Purewal MS; Kim P
    Nano Lett; 2010 Nov; 10(11):4538-43. PubMed ID: 20931994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A practical approach to calculating magnetic Johnson noise for precision measurements.
    Phan NS; Clayton SM; Kim YJ; Ito TM
    ArXiv; 2024 Sep; ():. PubMed ID: 39070035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.