These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37418745)
1. Improved Limits on the Coupling of Ultralight Bosonic Dark Matter to Photons from Optical Atomic Clock Comparisons. Filzinger M; Dörscher S; Lange R; Klose J; Steinel M; Benkler E; Peik E; Lisdat C; Huntemann N Phys Rev Lett; 2023 Jun; 130(25):253001. PubMed ID: 37418745 [TBL] [Abstract][Full Text] [Related]
2. Improved Limits for Violations of Local Position Invariance from Atomic Clock Comparisons. Lange R; Huntemann N; Rahm JM; Sanner C; Shao H; Lipphardt B; Tamm C; Weyers S; Peik E Phys Rev Lett; 2021 Jan; 126(1):011102. PubMed ID: 33480794 [TBL] [Abstract][Full Text] [Related]
3. Search for Ultralight Dark Matter from Long-Term Frequency Comparisons of Optical and Microwave Atomic Clocks. Kobayashi T; Takamizawa A; Akamatsu D; Kawasaki A; Nishiyama A; Hosaka K; Hisai Y; Wada M; Inaba H; Tanabe T; Yasuda M Phys Rev Lett; 2022 Dec; 129(24):241301. PubMed ID: 36563281 [TBL] [Abstract][Full Text] [Related]
4. Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons. Kennedy CJ; Oelker E; Robinson JM; Bothwell T; Kedar D; Milner WR; Marti GE; Derevianko A; Ye J Phys Rev Lett; 2020 Nov; 125(20):201302. PubMed ID: 33258619 [TBL] [Abstract][Full Text] [Related]
5. Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy. Van Tilburg K; Leefer N; Bougas L; Budker D Phys Rev Lett; 2015 Jul; 115(1):011802. PubMed ID: 26182090 [TBL] [Abstract][Full Text] [Related]
6. Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant. Safronova MS; Porsev SG; Sanner C; Ye J Phys Rev Lett; 2018 Apr; 120(17):173001. PubMed ID: 29756836 [TBL] [Abstract][Full Text] [Related]
7. Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement. Matsubara K; Hachisu H; Li Y; Nagano S; Locke C; Nogami A; Kajita M; Hayasaka K; Ido T; Hosokawa M Opt Express; 2012 Sep; 20(20):22034-41. PubMed ID: 23037353 [TBL] [Abstract][Full Text] [Related]
8. Search for Ultralight Dark Matter with Spectroscopy of Radio-Frequency Atomic Transitions. Zhang X; Banerjee A; Leyser M; Perez G; Schiller S; Budker D; Antypas D Phys Rev Lett; 2023 Jun; 130(25):251002. PubMed ID: 37418735 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a ^{88}Sr^{+} Optical Clock with a Direct Measurement of the Blackbody Radiation Shift and Determination of the Clock Frequency. Steinel M; Shao H; Filzinger M; Lipphardt B; Brinkmann M; Didier A; Mehlstäubler TE; Lindvall T; Peik E; Huntemann N Phys Rev Lett; 2023 Aug; 131(8):083002. PubMed ID: 37683165 [TBL] [Abstract][Full Text] [Related]
10. Improved Bounds on Ultralight Scalar Dark Matter in the Radio-Frequency Range. Tretiak O; Zhang X; Figueroa NL; Antypas D; Brogna A; Banerjee A; Perez G; Budker D Phys Rev Lett; 2022 Jul; 129(3):031301. PubMed ID: 35905361 [TBL] [Abstract][Full Text] [Related]
11. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Boulder Atomic Clock Optical Network (BACON) Collaboration* Nature; 2021 Mar; 591(7851):564-569. PubMed ID: 33762766 [TBL] [Abstract][Full Text] [Related]
12. New bounds on dark matter coupling from a global network of optical atomic clocks. Wcisło P; Ablewski P; Beloy K; Bilicki S; Bober M; Brown R; Fasano R; Ciuryło R; Hachisu H; Ido T; Lodewyck J; Ludlow A; McGrew W; Morzyński P; Nicolodi D; Schioppo M; Sekido M; Le Targat R; Wolf P; Zhang X; Zjawin B; Zawada M Sci Adv; 2018 Dec; 4(12):eaau4869. PubMed ID: 30539146 [TBL] [Abstract][Full Text] [Related]
13. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks. Akamatsu D; Yasuda M; Inaba H; Hosaka K; Tanabe T; Onae A; Hong FL Opt Express; 2014 Apr; 22(7):7898-905. PubMed ID: 24718165 [TBL] [Abstract][Full Text] [Related]
14. Searching for Dark Matter with an Optical Cavity and an Unequal-Delay Interferometer. Savalle E; Hees A; Frank F; Cantin E; Pottie PE; Roberts BM; Cros L; McAllister BT; Wolf P Phys Rev Lett; 2021 Feb; 126(5):051301. PubMed ID: 33605767 [TBL] [Abstract][Full Text] [Related]
15. Radium Ion Optical Clock. Holliman CA; Fan M; Contractor A; Brewer SM; Jayich AM Phys Rev Lett; 2022 Jan; 128(3):033202. PubMed ID: 35119894 [TBL] [Abstract][Full Text] [Related]
16. Coherent Suppression of Tensor Frequency Shifts through Magnetic Field Rotation. Lange R; Huntemann N; Sanner C; Shao H; Lipphardt B; Tamm C; Peik E Phys Rev Lett; 2020 Oct; 125(14):143201. PubMed ID: 33064511 [TBL] [Abstract][Full Text] [Related]
17. Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance. Garcon A; Blanchard JW; Centers GP; Figueroa NL; Graham PW; Jackson Kimball DF; Rajendran S; Sushkov AO; Stadnik YV; Wickenbrock A; Wu T; Budker D Sci Adv; 2019 Oct; 5(10):eaax4539. PubMed ID: 31692765 [TBL] [Abstract][Full Text] [Related]
18. Variation of the Quadrupole Hyperfine Structure and Nuclear Radius due to an Interaction with Scalar and Axion Dark Matter. Flambaum VV; Mansour AJ Phys Rev Lett; 2023 Sep; 131(11):113004. PubMed ID: 37774287 [TBL] [Abstract][Full Text] [Related]
19. Coherent Excitation of the Highly Forbidden Electric Octupole Transition in ^{172}Yb^{+}. Fürst HA; Yeh CH; Kalincev D; Kulosa AP; Dreissen LS; Lange R; Benkler E; Huntemann N; Peik E; Mehlstäubler TE Phys Rev Lett; 2020 Oct; 125(16):163001. PubMed ID: 33124859 [TBL] [Abstract][Full Text] [Related]