BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37418899)

  • 1. An integrated computational strategy to predict personalized cancer drug combinations by reversing drug resistance signatures.
    Wang X; Yang L; Yu C; Ling X; Guo C; Chen R; Li D; Liu Z
    Comput Biol Med; 2023 Sep; 163():107230. PubMed ID: 37418899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
    Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L
    Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models.
    Zhang T; Zhang L; Payne PRO; Li F
    Methods Mol Biol; 2021; 2194():223-238. PubMed ID: 32926369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding cancer heterogeneity: studying patient-specific signaling signatures towards personalized cancer therapy.
    Flashner-Abramson E; Vasudevan S; Adejumobi IA; Sonnenblick A; Kravchenko-Balasha N
    Theranostics; 2019; 9(18):5149-5165. PubMed ID: 31410207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BMC3PM: bioinformatics multidrug combination protocol for personalized precision medicine and its application in cancer treatment.
    Mokhtari M; Khoshbakht S; Akbari ME; Moravveji SS
    BMC Med Genomics; 2023 Dec; 16(1):328. PubMed ID: 38087279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning approaches for drug combination therapies.
    Güvenç Paltun B; Kaski S; Mamitsuka H
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients.
    Kim HK; Choi IJ; Kim CG; Kim HS; Oshima A; Michalowski A; Green JE
    PLoS One; 2011 Feb; 6(2):e16694. PubMed ID: 21364753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug Combination in Clinical Cancer Treatments.
    Lu DY; Lu TR; Yarla NS; Wu HY; Xu B; Ding J; Zhu H
    Rev Recent Clin Trials; 2017; 12(3):202-211. PubMed ID: 28782482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network Propagation Predicts Drug Synergy in Cancers.
    Li H; Li T; Quang D; Guan Y
    Cancer Res; 2018 Sep; 78(18):5446-5457. PubMed ID: 30054332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of machine learning approaches for drug synergy prediction in cancer.
    Torkamannia A; Omidi Y; Ferdousi R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated framework for identification of effective and synergistic anti-cancer drug combinations.
    Sharma A; Rani R
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850017. PubMed ID: 30304987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive approaches for drug combination discovery in cancer.
    Madani Tonekaboni SA; Soltan Ghoraie L; Manem VSK; Haibe-Kains B
    Brief Bioinform; 2018 Mar; 19(2):263-276. PubMed ID: 27881431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinase inhibition map approach for tumor sensitivity prediction and combination therapy design for targeted drugs.
    Pal R; Berlow N
    Pac Symp Biocomput; 2012; ():351-62. PubMed ID: 22174290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
    Preuer K; Lewis RPI; Hochreiter S; Bender A; Bulusu KC; Klambauer G
    Bioinformatics; 2018 May; 34(9):1538-1546. PubMed ID: 29253077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion mapping of drug targets on disease signaling network elements reveals drug combination strategies.
    Xu J; Regan-Fendt K; Deng S; Carson WE; Payne PRO; Li F
    Pac Symp Biocomput; 2018; 23():92-103. PubMed ID: 29218872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS.
    Verkhivker GM
    Pac Symp Biocomput; 2016; 21():45-56. PubMed ID: 26776172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New strategies for targeting drug combinations to overcome mutation-driven drug resistance.
    Wang L; Wang H; Song D; Xu M; Liebmen M
    Semin Cancer Biol; 2017 Feb; 42():44-51. PubMed ID: 27840276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Scale Signatures of Gene Interaction from Compound Screens Predict Clinical Efficacy of Targeted Cancer Therapies.
    Jiang P; Lee W; Li X; Johnson C; Liu JS; Brown M; Aster JC; Liu XS
    Cell Syst; 2018 Mar; 6(3):343-354.e5. PubMed ID: 29428415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.