These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37418917)

  • 21. Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes.
    Barbosa R; Lapa N; Boavida D; Lopes H; Gulyurtlu I; Mendes B
    J Hazard Mater; 2009 Oct; 170(2-3):902-9. PubMed ID: 19515486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
    Sormunen LA; Rantsi R
    Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An innovative methodological path to attribute the hazard property HP14 "ecotoxic" to waste using a weight of evidence approach.
    Fulvio O; Micol B; Andrea T; Andrea P; Chiara M
    J Environ Manage; 2023 Apr; 332():117208. PubMed ID: 36716538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests.
    Di Gianfilippo M; Costa G; Verginelli I; Gavasci R; Lombardi F
    Waste Manag; 2016 Oct; 56():216-28. PubMed ID: 27478024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ecotoxicological approach for hazard identification of energy ash.
    Stiernström S; Hemström K; Wik O; Carlsson G; Bengtsson BE; Breitholtz M
    Waste Manag; 2011 Feb; 31(2):342-52. PubMed ID: 20584596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of frameworks for ecotoxicological hazard classification of waste.
    Stiernström S; Wik O; Bendz D
    Waste Manag; 2016 Dec; 58():14-24. PubMed ID: 27639283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.
    Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH
    Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An ecotoxicological evaluation of aged bottom ash for use in constructions.
    Stiernström S; Enell A; Wik O; Borg H; Breitholtz M
    Waste Manag; 2014 Jan; 34(1):86-92. PubMed ID: 24188924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flow battery electrolyte from carbon black incineration fly ash: A feasibility study of an environment friendly disposal process.
    Li H; Huang S; Yao Z; Wang Q; Wang CH
    Waste Manag; 2021 Sep; 133():28-36. PubMed ID: 34364150
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Jeong S; Lee T; Lim SJ; Park YK; Kim S; Kim YM
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3764-3768. PubMed ID: 33715688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity of different aquatic bioassays in the assessment of a new natural formicide.
    Burga-Perez KF; Toumi H; Cotelle S; Ferard JF; Radetski CM
    J Environ Sci Health B; 2013; 48(1):57-62. PubMed ID: 23030441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.
    Huber F; Blasenbauer D; Mallow O; Lederer J; Winter F; Fellner J
    Waste Manag; 2016 Dec; 58():181-190. PubMed ID: 27650632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ecotoxicological risks of the abandoned F-Ba-Pb-Zn mining area of Osor (Spain).
    Bori J; Vallès B; Navarro A; Riva MC
    Environ Geochem Health; 2017 Jun; 39(3):665-679. PubMed ID: 27260479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling of material recovery from waste incineration bottom ash.
    Huber F
    Waste Manag; 2020 Mar; 105():61-72. PubMed ID: 32028102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.
    Karagiannidis A; Kontogianni S; Logothetis D
    Waste Manag; 2013 Feb; 33(2):363-72. PubMed ID: 23206519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecotoxicological assessment of leachates from MSWI bottom ashes.
    Lapa N; Barbosa R; Morais J; Mendes B; Méhu J; Santos Oliveira JF
    Waste Manag; 2002; 22(6):583-93. PubMed ID: 12214969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved understanding of key elements governing the toxicity of energy ash eluates.
    Stiernström S; Lindé M; Hemström K; Wik O; Ytreberg E; Bengtsson BE; Breitholtz M
    Waste Manag; 2013 Apr; 33(4):842-9. PubMed ID: 23312131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of simple and low-cost toxicity tests for ecotoxicological assessment of industrial wastewaters.
    Aydin ME; Aydin S; Tongur S; Kara G; Kolb M; Bahadir M
    Environ Technol; 2015; 36(22):2825-34. PubMed ID: 25951939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecotoxicological characterization of hazardous wastes.
    Wilke BM; Riepert F; Koch C; Kühne T
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):283-93. PubMed ID: 17996938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.