BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37419021)

  • 1. Continuous multi-membrane chromatography of large viral particles.
    Matos T; Hoying D; Kristopeit A; Wenger M; Joyce J
    J Chromatogr A; 2023 Aug; 1705():464194. PubMed ID: 37419021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Direct Approach for Process Development Using Single Column Experiments Results in Predictable Streamlined Multi-Column Chromatography Bioprocesses.
    Utturkar A; Gillette K; Sun CY; Pagkaliwangan M; Quesenberry R; Schofield M
    Biotechnol J; 2019 Apr; 14(4):. PubMed ID: 30288940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements.
    Gjoka X; Gantier R; Schofield M
    J Biotechnol; 2017 Jan; 242():11-18. PubMed ID: 27939321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous countercurrent tangential chromatography for mixed mode post-capture operations in monoclonal antibody purification.
    Dutta AK; Fedorenko D; Tan J; Costanzo JA; Kahn DS; Zydney AL; Shinkazh O
    J Chromatogr A; 2017 Aug; 1511():37-44. PubMed ID: 28697935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production.
    Steinebach F; Müller-Späth T; Morbidelli M
    Biotechnol J; 2016 Sep; 11(9):1126-41. PubMed ID: 27376629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving affinity chromatography resin efficiency using semi-continuous chromatography.
    Mahajan E; George A; Wolk B
    J Chromatogr A; 2012 Mar; 1227():154-62. PubMed ID: 22265178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and optimal design of batch and two-column continuous chromatographic frontal processes for monoclonal antibody purification.
    Shi C; Vogg S; Lin DQ; Sponchioni M; Morbidelli M
    Biotechnol Bioeng; 2021 Sep; 118(9):3420-3434. PubMed ID: 33755192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of batch and continuous multi-column protein A capture processes by optimal design.
    Baur D; Angarita M; Müller-Späth T; Steinebach F; Morbidelli M
    Biotechnol J; 2016 Jul; 11(7):920-31. PubMed ID: 26992151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of multi-column chromatography configurations through model-based optimization.
    Pareek A; Buddhiraju VS; Masampally VS; Premraj K; Runkana V
    Biotechnol Prog; 2023; 39(6):e3376. PubMed ID: 37454372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous multi-column capture of monoclonal antibodies with convective diffusive membrane adsorbers.
    Schmitz F; Knöchelmann E; Kruse T; Minceva M; Kampmann M
    Biotechnol Bioeng; 2024 Jun; 121(6):1859-1875. PubMed ID: 38470343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous bind-and-elute protein A capture chromatography: Optimization under process scale column constraints and comparison to batch operation.
    Kaltenbrunner O; Diaz L; Hu X; Shearer M
    Biotechnol Prog; 2016 Jul; 32(4):938-48. PubMed ID: 27111828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete or periodic continuity in continuous manufacturing platforms for production of monoclonal antibodies?
    Kateja N; Tiwari A; Thakur G; Rathore AS
    Biotechnol J; 2021 Jul; 16(7):e2000524. PubMed ID: 33773062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale-up of continuous multicolumn chromatography for the protein a capture step: From bench to clinical manufacturing.
    Ötes O; Flato H; Vazquez Ramirez D; Badertscher B; Bisschops M; Capito F
    J Biotechnol; 2018 Sep; 281():168-174. PubMed ID: 30025795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving mAb capture productivity on batch and continuous downstream processing using nanofiber PrismA adsorbents.
    Davis RR; Suber F; Heller I; Yang B; Martinez J
    J Biotechnol; 2021 Aug; 336():50-55. PubMed ID: 34118332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viral clearance capacity by continuous Protein A chromatography step using Sequential MultiColumn Chromatography.
    Goussen C; Goldstein L; Brèque C; You B; Boyer S; Bataille D; Burlot L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 May; 1145():122056. PubMed ID: 32315973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A straightforward methodology for designing continuous monoclonal antibody capture multi-column chromatography processes.
    Gjoka X; Rogler K; Martino RA; Gantier R; Schofield M
    J Chromatogr A; 2015 Oct; 1416():38-46. PubMed ID: 26363944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of integrated chromatography sequences for purification of biopharmaceuticals.
    Löfgren A; Yamanee-Nolin M; Tallvod S; Fons JG; Andersson N; Nilsson B
    Biotechnol Prog; 2019 Nov; 35(6):e2871. PubMed ID: 31207182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of using continuous chromatography in downstream processing: Comparison of costs and product quality for a hybrid process vs. a conventional batch process.
    Ötes O; Flato H; Winderl J; Hubbuch J; Capito F
    J Biotechnol; 2017 Oct; 259():213-220. PubMed ID: 28684321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane Adsorber for the Fast Purification of a Monoclonal Antibody Using Protein A Chromatography.
    Brämer C; Tünnermann L; Gonzalez Salcedo A; Reif OW; Solle D; Scheper T; Beutel S
    Membranes (Basel); 2019 Nov; 9(12):. PubMed ID: 31783640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear flow-velocity gradient chromatography-An efficient method for increasing the process efficiency of batch and continuous capture chromatography of proteins.
    Chen CS; Ando K; Yoshimoto N; Yamamoto S
    Biotechnol Bioeng; 2021 Mar; 118(3):1262-1272. PubMed ID: 33283261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.