These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Exploring doped or vacancy-modified graphene-based electrodes for applications in asymmetric supercapacitors. da Silva DAC; Paulista Neto AJ; Pascon AM; Fileti EE; Fonseca LRC; Zanin HG Phys Chem Chem Phys; 2020 Feb; 22(7):3906-3913. PubMed ID: 32016251 [TBL] [Abstract][Full Text] [Related]
3. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode. Song C; Wang J; Meng Z; Hu F; Jian X Chemphyschem; 2018 Jul; 19(13):1579-1583. PubMed ID: 29603849 [TBL] [Abstract][Full Text] [Related]
4. Improving the Quantum Capacitance of Graphene-Based Supercapacitors by the Doping and Co-Doping: First-Principles Calculations. Xu Q; Yang G; Fan X; Zheng W ACS Omega; 2019 Aug; 4(8):13209-13217. PubMed ID: 31460448 [TBL] [Abstract][Full Text] [Related]
5. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors. Vatamanu J; Ni X; Liu F; Bedrov D Nanotechnology; 2015 Nov; 26(46):464001. PubMed ID: 26511198 [TBL] [Abstract][Full Text] [Related]
6. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment. Paek E; Pak AJ; Hwang GS ACS Appl Mater Interfaces; 2014 Aug; 6(15):12168-76. PubMed ID: 24983127 [TBL] [Abstract][Full Text] [Related]
7. Route to achieving enhanced quantum capacitance in functionalized graphene based supercapacitor electrodes. Sruthi T; Kartick T J Phys Condens Matter; 2019 Nov; 31(47):475502. PubMed ID: 31212269 [TBL] [Abstract][Full Text] [Related]
8. Role of Defects on the Particle Size-Capacitance Relationship of Zn-Co Mixed Metal Oxide Supported on Heteroatom-Doped Graphenes as Supercapacitors. Hu J; Peng Y; Albero J; García H Adv Sci (Weinh); 2022 Dec; 9(34):e2204316. PubMed ID: 36257897 [TBL] [Abstract][Full Text] [Related]
9. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors. Chen J; Han Y; Kong X; Deng X; Park HJ; Guo Y; Jin S; Qi Z; Lee Z; Qiao Z; Ruoff RS; Ji H Angew Chem Int Ed Engl; 2016 Oct; 55(44):13822-13827. PubMed ID: 27701817 [TBL] [Abstract][Full Text] [Related]
10. Theoretical investigation of quantum capacitance of Co-doped α-MnO Vijayan AK; M S S; Kour S; Dastider SG; Mondal K; Sharma AL Phys Chem Chem Phys; 2023 Sep; 25(37):25789-25802. PubMed ID: 37724421 [TBL] [Abstract][Full Text] [Related]
11. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. Zhan C; Zhang Y; Cummings PT; Jiang DE Phys Chem Chem Phys; 2016 Feb; 18(6):4668-74. PubMed ID: 26794824 [TBL] [Abstract][Full Text] [Related]
12. Density functional theory analysis of selective adsorption of AsH Li Y; Sun X; Zhou L; Ning P; Tang L J Mol Model; 2019 May; 25(5):145. PubMed ID: 31055650 [TBL] [Abstract][Full Text] [Related]
13. Influence of doping and solvent interactions on the electronic and capacitive properties of metal-supported graphene: A combined DFT and AIMD study. Elshazly MK; Huzayyin A; Dawson F J Chem Phys; 2023 Dec; 159(22):. PubMed ID: 38078528 [TBL] [Abstract][Full Text] [Related]
14. Density functional theory studies on graphene/h-boron nitride hybrid nanosheets for supercapacitor electrode applications. Paramasivam N; Sambandam A; Natesan B Phys Chem Chem Phys; 2023 Nov; 25(43):29914-29923. PubMed ID: 37901967 [TBL] [Abstract][Full Text] [Related]
15. Prominent Structural Dependence of Quantum Capacitance Unraveled by Nitrogen-Doped Graphene Mesosponge. Tang R; Aziz A; Yu W; Pan ZZ; Nishikawa G; Yoshii T; Nomura K; Taylor EE; Stadie NP; Inoue K; Kotani M; Kyotani T; Nishihara H Small; 2024 May; 20(18):e2308066. PubMed ID: 38057129 [TBL] [Abstract][Full Text] [Related]
16. High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. Zhang N; Li Y; Xu J; Li J; Wei B; Ding Y; Amorim I; Thomas R; Thalluri SM; Liu Y; Yu G; Liu L ACS Nano; 2019 Sep; 13(9):10612-10621. PubMed ID: 31461617 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the appropriateness of γ-graphyne derivatives as electrode materials for supercapacitors. Kenarsari MA; Vafaee M; Nasrollahpour M; Khoshdel SMM Sci Rep; 2023 Sep; 13(1):15090. PubMed ID: 37699919 [TBL] [Abstract][Full Text] [Related]
18. Cu@Fe-Redox Capacitive-Based Metal-Organic Framework Film for a High-Performance Supercapacitor Electrode. Patil SA; Katkar PK; Kaseem M; Nazir G; Lee SW; Patil H; Kim H; Magotra VK; Thi HB; Im H; Shrestha NK Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242007 [TBL] [Abstract][Full Text] [Related]
19. Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid. Pak AJ; Paek E; Hwang GS Phys Chem Chem Phys; 2013 Dec; 15(45):19741-7. PubMed ID: 24141286 [TBL] [Abstract][Full Text] [Related]
20. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach. Lee JH; Kwon SH; Kwon S; Cho M; Kim KH; Han TH; Lee SG Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]