These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 37419262)
1. Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors. Tong R; Ma Z; Gu P; Yao R; Li T; Zeng M; Guo F; Liu L; Xu J Int J Biol Macromol; 2023 Aug; 246():125683. PubMed ID: 37419262 [TBL] [Abstract][Full Text] [Related]
2. Stretchable and transparent alginate ionic gel film for multifunctional sensors and devices. Tong R; Ma Z; Yao R; Gu P; Li T; Liu L; Guo F; Zeng M; Xu J Int J Biol Macromol; 2023 Aug; 246():125667. PubMed ID: 37406908 [TBL] [Abstract][Full Text] [Related]
3. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Tong R; Chen G; Pan D; Qi H; Li R; Tian J; Lu F; He M Biomacromolecules; 2019 May; 20(5):2096-2104. PubMed ID: 30995834 [TBL] [Abstract][Full Text] [Related]
4. A universal solvent-replacement strategy to convert alginate hydrogels into mechanically strong and transparent alginate eutectogels for sensitive strain sensors. Li T; Yao R; Ma Z; Tong R; Wang Y; Gu P; Xu J; Ye H; Liu L Int J Biol Macromol; 2024 Jun; 271(Pt 1):132789. PubMed ID: 38845258 [TBL] [Abstract][Full Text] [Related]
5. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors. Liang Y; Ye L; Sun X; Lv Q; Liang H ACS Appl Mater Interfaces; 2020 Jan; 12(1):1577-1587. PubMed ID: 31794185 [TBL] [Abstract][Full Text] [Related]
6. Nanostructured ionic hydrogel with integrated conductivity, stretchability and thermal responsiveness for a high-performance strain and temperature sensor. Pang Q; Wu K; Jiang Z; Yang F; Shi Z; Gao H; Zhang C; Hou R; Zhu Y Biomater Sci; 2023 May; 11(10):3603-3615. PubMed ID: 37009640 [TBL] [Abstract][Full Text] [Related]
7. Ionically Conductive Hydrogel with Fast Self-Recovery and Low Residual Strain as Strain and Pressure Sensors. Sun X; Yao F; Wang C; Qin Z; Zhang H; Yu Q; Zhang H; Dong X; Wei Y; Li J Macromol Rapid Commun; 2020 Jul; 41(13):e2000185. PubMed ID: 32500629 [TBL] [Abstract][Full Text] [Related]
8. Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors. Tong R; Chen G; Tian J; He M Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31835891 [TBL] [Abstract][Full Text] [Related]
9. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports. Lei T; Pan J; Wang N; Xia Z; Zhang Q; Fan J; Tao L; Shou W; Gao Y Mater Horiz; 2024 Mar; 11(5):1234-1250. PubMed ID: 38131412 [TBL] [Abstract][Full Text] [Related]
10. Ultrastretchable, Antifreezing, and High-Performance Strain Sensor Based on a Muscle-Inspired Anisotropic Conductive Hydrogel for Human Motion Monitoring and Wireless Transmission. Chen L; Chang X; Chen J; Zhu Y ACS Appl Mater Interfaces; 2022 Sep; 14(38):43833-43843. PubMed ID: 36112731 [TBL] [Abstract][Full Text] [Related]
11. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. Liang Y; Shen Y; Sun X; Liang H Int J Biol Macromol; 2021 Dec; 193(Pt A):629-637. PubMed ID: 34717973 [TBL] [Abstract][Full Text] [Related]
12. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123 [TBL] [Abstract][Full Text] [Related]
13. Superstrong, superstiff, and conductive alginate hydrogels. Ji D; Park JM; Oh MS; Nguyen TL; Shin H; Kim JS; Kim D; Park HS; Kim J Nat Commun; 2022 May; 13(1):3019. PubMed ID: 35641519 [TBL] [Abstract][Full Text] [Related]
14. Transparent, photothermal and stretchable alginate-based hydrogels for remote actuation and human motion sensing. Sun Z; Hu Y; Wei C; Hao R; Hao C; Liu W; Liu H; Huang M; He S; Yang M Carbohydr Polym; 2022 Oct; 293():119727. PubMed ID: 35798423 [TBL] [Abstract][Full Text] [Related]
15. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors. Zhang Y; Li S; Gao Z; Bi D; Qu N; Huang S; Zhao X; Li R Carbohydr Polym; 2023 Sep; 315():120953. PubMed ID: 37230609 [TBL] [Abstract][Full Text] [Related]
16. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal-Mechanical Dual Sensors and Electroluminescent Devices. Yang B; Yuan W ACS Appl Mater Interfaces; 2019 May; 11(18):16765-16775. PubMed ID: 30983316 [TBL] [Abstract][Full Text] [Related]
17. Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors. Cheng Y; Zang J; Zhao X; Wang H; Hu Y Carbohydr Polym; 2022 Feb; 277():118872. PubMed ID: 34893277 [TBL] [Abstract][Full Text] [Related]
18. Ultra-stretchable and conductive polyacrylamide/carboxymethyl chitosan composite hydrogels with low modulus and fast self-recoverability as flexible strain sensors. Ding H; Liu J; Huo P; Ding R; Shen X; Mao H; Wen Y; Li H; Wu ZL Int J Biol Macromol; 2023 Dec; 253(Pt 5):127146. PubMed ID: 37778581 [TBL] [Abstract][Full Text] [Related]
19. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. Shu L; Wang Z; Zhang XF; Yao J Int J Biol Macromol; 2023 Mar; 230():123425. PubMed ID: 36706872 [TBL] [Abstract][Full Text] [Related]
20. Mxene Reinforced Supramolecular Hydrogels with High Strength, Stretchability, and Reliable Conductivity for Sensitive Strain Sensors. Zeng Z; Yu S; Guo C; Lu D; Geng Z; Pei D Macromol Rapid Commun; 2022 Aug; 43(15):e2200103. PubMed ID: 35319127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]