BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37419285)

  • 1. Antineoplastic effects of cassava-cyanide extract on human glioblastoma (LN229) cells.
    S S; Tom J; V P S; U V; Xavier J; C A J; P V M
    Toxicon; 2023 Aug; 232():107200. PubMed ID: 37419285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cyanide ions (CN-) extracted from cassava (Manihotesculenta Crantz) on Alveolar Epithelial Cells (A549 cells).
    T J; S S; X J; V P S; N P; U V; C A J; P V M
    Toxicology; 2021 Dec; 464():153019. PubMed ID: 34740671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats.
    Soto-Blanco B; Górniak SL
    Exp Toxicol Pathol; 2010 Jul; 62(4):361-6. PubMed ID: 19559583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D; Sayre R
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanide detoxification in cassava for food and feed uses.
    Padmaja G
    Crit Rev Food Sci Nutr; 1995 Jul; 35(4):299-339. PubMed ID: 7576161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root.
    Ogbonna AC; Braatz de Andrade LR; Rabbi IY; Mueller LA; Jorge de Oliveira E; Bauchet GJ
    Plant J; 2021 Feb; 105(3):754-770. PubMed ID: 33164279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil nutrient adequacy for optimal cassava growth, implications on cyanogenic glucoside production: A case of konzo-affected Mtwara region, Tanzania.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2019; 14(5):e0216708. PubMed ID: 31083702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linamarase expression in cassava cultivars with roots of low- and high-cyanide content.
    Santana MA; Vásquez V; Matehus J; Aldao RR
    Plant Physiol; 2002 Aug; 129(4):1686-94. PubMed ID: 12177481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba.
    Hernández T; Lundquist P; Oliveira L; Pérez Cristiá R; Rodriguez E; Rosling H
    Nat Toxins; 1995; 3(2):114-7. PubMed ID: 7613736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of linamarase and its use in the determination of bound cyanide in cassava using flow injection analysis.
    Narinesingh D; Jaipersad D; Chang-Yen I
    Anal Biochem; 1988 Jul; 172(1):89-95. PubMed ID: 3142290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current knowledge and future research perspectives on cassava (Manihot esculenta Crantz) chemical defenses: An agroecological view.
    Pinto-Zevallos DM; Pareja M; Ambrogi BG
    Phytochemistry; 2016 Oct; 130():10-21. PubMed ID: 27316676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
    Narayanan NN; Ihemere U; Ellery C; Sayre RT
    PLoS One; 2011; 6(7):e21996. PubMed ID: 21799761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preclinical and clinical research on the toxic and neurological effects of cassava (Manihot esculenta Crantz) consumption.
    Rivadeneyra-Domínguez E; Rodríguez-Landa JF
    Metab Brain Dis; 2020 Jan; 35(1):65-74. PubMed ID: 31802307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ultrasonic pretreatment on eliminating cyanogenic glycosides and hydrogen cyanide in cassava.
    Zhong Y; Xu T; Ji S; Wu X; Zhao T; Li S; Zhang P; Li K; Lu B
    Ultrason Sonochem; 2021 Oct; 78():105742. PubMed ID: 34487981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The adverse effects of long-term cassava (Manihot esculenta Crantz) consumption.
    Kamalu BP
    Int J Food Sci Nutr; 1995 Feb; 46(1):65-93. PubMed ID: 7712344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
    Gleadow R; Pegg A; Blomstedt CK
    J Exp Bot; 2016 Oct; 67(18):5403-5413. PubMed ID: 27506218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary exposure and risk assessment of cyanide via cassava consumption in Chinese population.
    Zhong Y; Xu T; Wu X; Li K; Zhang P; Ji S; Li S; Zheng L; Lu B
    Food Chem; 2021 Aug; 354():129405. PubMed ID: 33770563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxicity of purified cassava linamarin to a selected cancer cell lines.
    Idibie CA; Davids H; Iyuke SE
    Bioprocess Biosyst Eng; 2007 Jul; 30(4):261-9. PubMed ID: 17566787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety.
    Nambisan B
    Food Chem Toxicol; 2011 Mar; 49(3):690-3. PubMed ID: 21074593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.