BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37419285)

  • 21. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
    Jørgensen K; Bak S; Busk PK; Sørensen C; Olsen CE; Puonti-Kaerlas J; Møller BL
    Plant Physiol; 2005 Sep; 139(1):363-74. PubMed ID: 16126856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption.
    Rivadeneyra-Domínguez E; Vázquez-Luna A; Rodríguez-Landa JF; Díaz-Sobac R
    Food Chem Toxicol; 2013 Sep; 59():230-5. PubMed ID: 23778051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of sucrose uptake system in cassava (Manihot esculenta Crantz).
    Eksittikul T; Chulavatnatol M; Limpaseni T
    Plant Sci; 2001 Mar; 160(4):733-737. PubMed ID: 11448748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
    Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N
    Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci.
    Easson MLAE; Malka O; Paetz C; Hojná A; Reichelt M; Stein B; van Brunschot S; Feldmesser E; Campbell L; Colvin J; Winter S; Morin S; Gershenzon J; Vassão DG
    Sci Rep; 2021 Jun; 11(1):13244. PubMed ID: 34168179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corrin-based chemosensors for the ASSURED detection of endogenous cyanide.
    Zelder F; Tivana L
    Org Biomol Chem; 2015 Jan; 13(1):14-7. PubMed ID: 25317920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyanide bystander effect of the linamarase/linamarin killer-suicide gene therapy system.
    Cortés ML; García-Escudero V; Hughes M; Izquierdo M
    J Gene Med; 2002; 4(4):407-14. PubMed ID: 12124983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification, characterization, and localization of linamarase in cassava.
    Mkpong OE; Yan H; Chism G; Sayre RT
    Plant Physiol; 1990 May; 93(1):176-81. PubMed ID: 16667431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of cyanogen-free transgenic cassava.
    Siritunga D; Sayre RT
    Planta; 2003 Jul; 217(3):367-73. PubMed ID: 14520563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harnessing the anti-cancer potential of linamarin: A computational study on design and hydrolysis mechanisms of its derivatives.
    Liyanage SD; Gunasekera D; Ratnaweera CN
    J Mol Graph Model; 2024 May; 128():108716. PubMed ID: 38277856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pattern of enzyme changes in rabbits administered linamarin or potassium cyanide.
    Padmaja G; Panikkar KR
    Indian J Exp Biol; 1989 Jun; 27(6):551-5. PubMed ID: 2555300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyanogenic potential in cassava and its influence on a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae).
    Riis L; Bellotti AC; Bonierbale M; O'Brien GM
    J Econ Entomol; 2003 Dec; 96(6):1905-14. PubMed ID: 14977132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variations in the chemical composition of cassava ( Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation.
    Burns AE; Gleadow RM; Zacarias AM; Cuambe CE; Miller RE; Cavagnaro TR
    J Agric Food Chem; 2012 May; 60(19):4946-56. PubMed ID: 22515684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New aspects in pathogenesis of konzo: neural cell damage directly caused by linamarin contained in cassava (Manihot esculenta Crantz).
    Sreeja VG; Nagahara N; Li Q; Minami M
    Br J Nutr; 2003 Aug; 90(2):467-72. PubMed ID: 12908909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products.
    Tivana LD; Da Cruz Francisco J; Zelder F; Bergenståhl B; Dejmek P
    Food Chem; 2014 Sep; 158():20-7. PubMed ID: 24731309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of the effects of cassava (Manihot esculenta Crantz) organic cyanide and inorganic cyanide on muscle and bone development in a Nigerian breed of dog.
    Ibebunjo C; Kamalu BP; Ihemelandu EC
    Br J Nutr; 1992 Sep; 68(2):483-91. PubMed ID: 1445827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development.
    Zidenga T; Siritunga D; Sayre RT
    Front Plant Sci; 2017; 8():220. PubMed ID: 28286506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes.
    Sornyotha S; Kyu KL; Ratanakhanokchai K
    J Biosci Bioeng; 2010 Jan; 109(1):9-14. PubMed ID: 20129074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes.
    Andersen MD; Busk PK; Svendsen I; Møller BL
    J Biol Chem; 2000 Jan; 275(3):1966-75. PubMed ID: 10636899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detoxification of Cassava Leaves by Thermal, Sodium Bicarbonate, Enzymatic, and Ultrasonic Treatments.
    Latif S; Zimmermann S; Barati Z; Müller J
    J Food Sci; 2019 Jul; 84(7):1986-1991. PubMed ID: 31192461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.