These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37419308)

  • 1. A Multi-Arm Two-Stage (MATS) design for proof-of-concept and dose optimization in early-phase oncology trials.
    Jiang Z; Mi G; Lin J; Lorenzato C; Ji Y
    Contemp Clin Trials; 2023 Sep; 132():107278. PubMed ID: 37419308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and sample size determination for multiple-dose randomized phase II trials for dose optimization.
    Yang P; Li D; Lin R; Huang B; Yuan Y
    Stat Med; 2024 Jul; 43(15):2972-2986. PubMed ID: 38747472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2-in-1 adaptive design to seamlessly expand a selected dose from a phase 2 trial to a phase 3 trial for oncology drug development.
    Zhang P; Li XN; Lu K; Wu C
    Contemp Clin Trials; 2022 Nov; 122():106931. PubMed ID: 36174958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-stage subgroup-specific time-to-event (2S-Sub-TITE): An adaptive two-stage time-to-toxicity design for subgroup-specific dose finding in phase I oncology trials.
    McGovern A; Chapple AG; Ma C
    Pharm Stat; 2022 Nov; 21(6):1138-1148. PubMed ID: 35560864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid design for dose-finding oncology clinical trials.
    Liao JJZ; Zhou F; Zhou H; Petruzzelli L; Hou K; Asatiani E
    Int J Cancer; 2022 Nov; 151(9):1602-1610. PubMed ID: 35802470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of adaptive trial designs for dose optimization.
    Zhang J; Chen X; Li B; Yan F
    Pharm Stat; 2023; 22(5):797-814. PubMed ID: 37156731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncology phase I trial design and conduct: time for a change - MDICT Guidelines 2022.
    Araujo D; Greystoke A; Bates S; Bayle A; Calvo E; Castelo-Branco L; de Bono J; Drilon A; Garralda E; Ivy P; Kholmanskikh O; Melero I; Pentheroudakis G; Petrie J; Plummer R; Ponce S; Postel-Vinay S; Siu L; Spreafico A; Stathis A; Steeghs N; Yap C; Yap TA; Ratain M; Seymour L
    Ann Oncol; 2023 Jan; 34(1):48-60. PubMed ID: 36182023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase I dose-escalation oncology trials with sequential multiple schedules.
    Günhan BK; Weber S; Seroutou A; Friede T
    BMC Med Res Methodol; 2021 Apr; 21(1):69. PubMed ID: 33853539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shotgun: A Bayesian seamless phase I-II design to accelerate the development of targeted therapies and immunotherapy.
    Jiang L; Li R; Yan F; Yap TA; Yuan Y
    Contemp Clin Trials; 2021 May; 104():106338. PubMed ID: 33711459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical Bayesian design to identify the maximum tolerated dose contour for drug combination trials.
    Zhang L; Yuan Y
    Stat Med; 2016 Nov; 35(27):4924-4936. PubMed ID: 27580928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current issues in dose-finding designs: A response to the US Food and Drug Adminstration's Oncology Center of Excellence Project Optimus.
    Thall PF; Garrett-Mayer E; Wages NA; Halabi S; Cheung YK
    Clin Trials; 2024 Jun; 21(3):267-272. PubMed ID: 38570906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of phase-I dose finding designs with and without a run-in intra-patient dose escalation stage.
    Labrenz J; Edelmann D; Heitmann JS; Salih HR; Kopp-Schneider A; Schlenk RF
    Pharm Stat; 2023 Mar; 22(2):236-247. PubMed ID: 36285348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian hybrid dose-finding design in phase I oncology clinical trials.
    Yuan Y; Yin G
    Stat Med; 2011 Jul; 30(17):2098-108. PubMed ID: 21365672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A seamless phase II/III design with dose optimization for oncology drug development.
    Li Y; Zhang Y; Mi G; Lin J
    Stat Med; 2024 Aug; 43(18):3383-3402. PubMed ID: 38845095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DROID: dose-ranging approach to optimizing dose in oncology drug development.
    Guo B; Yuan Y
    Biometrics; 2023 Dec; 79(4):2907-2919. PubMed ID: 36807110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal phase I dose-escalation trial designs in oncology--a simulation study.
    Gerke O; Siedentop H
    Stat Med; 2008 Nov; 27(26):5329-44. PubMed ID: 17849502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backfilling Patients in Phase I Dose-Escalation Trials Using Bayesian Optimal Interval Design (BOIN).
    Zhao Y; Yuan Y; Korn EL; Freidlin B
    Clin Cancer Res; 2024 Feb; 30(4):673-679. PubMed ID: 38048044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An adaptive multi-stage phase I dose-finding design incorporating continuous efficacy and toxicity data from multiple treatment cycles.
    Du Y; Yin J; Sargent DJ; Mandrekar SJ
    J Biopharm Stat; 2019; 29(2):271-286. PubMed ID: 30403559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian methods for the analysis of early-phase oncology basket trials with information borrowing across cancer types.
    Jin J; Riviere MK; Luo X; Dong Y
    Stat Med; 2020 Nov; 39(25):3459-3475. PubMed ID: 32717103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid continuous reassessment method with overdose control for safer dose escalation.
    Ghosh D; Xie H; Zhang L; Chen F; Mohanty S; Li X
    J Biopharm Stat; 2023 Sep; 33(5):586-595. PubMed ID: 36715485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.