These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37419329)
1. Delineation of novel genomic loci and putative candidate genes associated with seed iron and zinc content in lentil (Lens culinaris Medik.). Singh B; Singh S; Mahato AK; Dikshit HK; Tripathi K; Bhatia S Plant Sci; 2023 Oct; 335():111787. PubMed ID: 37419329 [TBL] [Abstract][Full Text] [Related]
2. Marker-Trait Association Analysis of Iron and Zinc Concentration in Lentil ( Khazaei H; Podder R; Caron CT; Kundu SS; Diapari M; Vandenberg A; Bett KE Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724070 [TBL] [Abstract][Full Text] [Related]
3. Identification of anthracnose race 1 resistance loci in lentil by integrating linkage mapping and genome-wide association study. Gela T; Ramsay L; Haile TA; Vandenberg A; Bett K Plant Genome; 2021 Nov; 14(3):e20131. PubMed ID: 34482633 [TBL] [Abstract][Full Text] [Related]
4. Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). Singh A; Sharma V; Dikshit HK; Aski M; Kumar H; Thirunavukkarasu N; Patil BS; Kumar S; Sarker A PLoS One; 2017; 12(11):e0188296. PubMed ID: 29161321 [TBL] [Abstract][Full Text] [Related]
5. Dissecting the Genetic Architecture of Aphanomyces Root Rot Resistance in Lentil by QTL Mapping and Genome-Wide Association Study. Ma Y; Marzougui A; Coyne CJ; Sankaran S; Main D; Porter LD; Mugabe D; Smitchger JA; Zhang C; Amin MN; Rasheed N; Ficklin SP; McGee RJ Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32244875 [TBL] [Abstract][Full Text] [Related]
6. Genetic dissection of grain iron and zinc concentrations in lentil ( Kumar H; Singh A; Dikshit HK; Mishra GP; Aski M; Meena MC; Kumar S J Genet; 2019 Sep; 98():. PubMed ID: 31544775 [TBL] [Abstract][Full Text] [Related]
7. EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Kaur S; Cogan NO; Stephens A; Noy D; Butsch M; Forster JW; Materne M Theor Appl Genet; 2014 Mar; 127(3):703-13. PubMed ID: 24370962 [TBL] [Abstract][Full Text] [Related]
8. Genetic dissection of seed-iron and zinc concentrations in chickpea. Upadhyaya HD; Bajaj D; Das S; Kumar V; Gowda CL; Sharma S; Tyagi AK; Parida SK Sci Rep; 2016 Apr; 6():24050. PubMed ID: 27063651 [TBL] [Abstract][Full Text] [Related]
9. Construction of a high-density interspecific (Lens culinaris x L. odemensis) genetic map based on functional markers for mapping morphological and agronomical traits, and QTLs affecting resistance to Ascochyta in lentil. Polanco C; Sáenz de Miera LE; González AI; García P; Fratini R; Vaquero F; Vences FJ; Pérez de la Vega M PLoS One; 2019; 14(3):e0214409. PubMed ID: 30917174 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide association study uncovers genomic regions associated with grain iron, zinc and protein content in pearl millet. Pujar M; Gangaprasad S; Govindaraj M; Gangurde SS; Kanatti A; Kudapa H Sci Rep; 2020 Nov; 10(1):19473. PubMed ID: 33173120 [TBL] [Abstract][Full Text] [Related]
11. Application of Genomics to Understand Salt Tolerance in Lentil. Dissanayake R; Cogan NOI; Smith KF; Kaur S Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33668850 [TBL] [Abstract][Full Text] [Related]
12. Construction of a Genetic Linkage Map and Identification of QTLs for Seed Weight and Seed Size Traits in Lentil (Lens culinaris Medik.). Verma P; Goyal R; Chahota RK; Sharma TR; Abdin MZ; Bhatia S PLoS One; 2015; 10(10):e0139666. PubMed ID: 26436554 [TBL] [Abstract][Full Text] [Related]